Study on the Arctic Underwater Terrain-Aided Navigation Based on Fuzzy-Particle Filter
The ultra-low resolution underwater terrain maps of the Arctic region reduce the localization and navigation accuracy of the underwater vehicle relying on terrain-aided navigation. In this paper, we study the navigation ability of Autonomous Underwater Vehicles (AUVs) under the ultralow-resolution t...
Gespeichert in:
Veröffentlicht in: | International journal of fuzzy systems 2021-06, Vol.23 (4), p.1017-1026 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1026 |
---|---|
container_issue | 4 |
container_start_page | 1017 |
container_title | International journal of fuzzy systems |
container_volume | 23 |
creator | Liu, Yanji Zhang, Guichen Huang, Zhijian |
description | The ultra-low resolution underwater terrain maps of the Arctic region reduce the localization and navigation accuracy of the underwater vehicle relying on terrain-aided navigation. In this paper, we study the navigation ability of Autonomous Underwater Vehicles (AUVs) under the ultralow-resolution terrain map. Firstly, the low-resolution map is transformed into a continuous map by bilinear interpolation. Then, a Terrain-Aided Navigation (TAN) system based on the Particle Filter (PF) is constructed to estimate the state of AUV position by particles. Particles of a random distribution of fixed variance can effectively track targets. However, a fixed variance distribution is not well adapted to many different situations. To improve navigation accuracy and robustness, fuzzy logic is used to estimate the distribution variance of particles under the current terrain gradient dynamically. The simulation results show that our proposed Fuzzy-PF TAN system is robust under various current disturbance situations. The position error of our system is within a map resolution unit of 500 m. |
doi_str_mv | 10.1007/s40815-020-01047-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933422200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933422200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-4b1d5f05fffdd2240ca7c08e0d3b16c7809228ff5777477dd0969a84b9e37033</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWLQv4GnBc3QyyW42x1qsCkUFq9eQ3WRrpO7WZGtpn97oCt48zTB83z_wE3LG4IIByMsooGQ5BQQKDISk2wMyQqYU5cjYIRmxvECKQqpjMo7RV8AZFjwv-Ii8PPUbu8u6NutfXTYJde_r7Lm1LmxN70K2cCEY39KJt85m9-bTL03vE35lYjqkZbbZ73f00YRkrlw286vknZKjxqyiG__OE7KYXS-mt3T-cHM3ncxpLQB7Kipm8wbypmmsRRRQG1lD6cDyihW1LEEhlk2TSymFlNaCKpQpRaUcl8D5CTkfYteh-9i42Ou3bhPa9FGj4lwgIkCicKDq0MUYXKPXwb-bsNMM9HeDemhQpwb1T4N6myQ-SDHB7dKFv-h_rC956nNZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933422200</pqid></control><display><type>article</type><title>Study on the Arctic Underwater Terrain-Aided Navigation Based on Fuzzy-Particle Filter</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Liu, Yanji ; Zhang, Guichen ; Huang, Zhijian</creator><creatorcontrib>Liu, Yanji ; Zhang, Guichen ; Huang, Zhijian</creatorcontrib><description>The ultra-low resolution underwater terrain maps of the Arctic region reduce the localization and navigation accuracy of the underwater vehicle relying on terrain-aided navigation. In this paper, we study the navigation ability of Autonomous Underwater Vehicles (AUVs) under the ultralow-resolution terrain map. Firstly, the low-resolution map is transformed into a continuous map by bilinear interpolation. Then, a Terrain-Aided Navigation (TAN) system based on the Particle Filter (PF) is constructed to estimate the state of AUV position by particles. Particles of a random distribution of fixed variance can effectively track targets. However, a fixed variance distribution is not well adapted to many different situations. To improve navigation accuracy and robustness, fuzzy logic is used to estimate the distribution variance of particles under the current terrain gradient dynamically. The simulation results show that our proposed Fuzzy-PF TAN system is robust under various current disturbance situations. The position error of our system is within a map resolution unit of 500 m.</description><identifier>ISSN: 1562-2479</identifier><identifier>EISSN: 2199-3211</identifier><identifier>DOI: 10.1007/s40815-020-01047-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Altitude ; Artificial Intelligence ; Autonomous underwater vehicles ; Computational Intelligence ; Energy consumption ; Engineering ; Fuzzy logic ; Ice environments ; Interpolation ; Localization ; Magnetic fields ; Management Science ; Normal distribution ; Operations Research ; Position errors ; Robustness (mathematics) ; Sensors ; Terrain mapping ; Terrain referenced navigation ; Tracking ; Variance</subject><ispartof>International journal of fuzzy systems, 2021-06, Vol.23 (4), p.1017-1026</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-4b1d5f05fffdd2240ca7c08e0d3b16c7809228ff5777477dd0969a84b9e37033</citedby><cites>FETCH-LOGICAL-c402t-4b1d5f05fffdd2240ca7c08e0d3b16c7809228ff5777477dd0969a84b9e37033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40815-020-01047-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2933422200?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,41469,42538,43786,51300,64364,64368,72218</link.rule.ids></links><search><creatorcontrib>Liu, Yanji</creatorcontrib><creatorcontrib>Zhang, Guichen</creatorcontrib><creatorcontrib>Huang, Zhijian</creatorcontrib><title>Study on the Arctic Underwater Terrain-Aided Navigation Based on Fuzzy-Particle Filter</title><title>International journal of fuzzy systems</title><addtitle>Int. J. Fuzzy Syst</addtitle><description>The ultra-low resolution underwater terrain maps of the Arctic region reduce the localization and navigation accuracy of the underwater vehicle relying on terrain-aided navigation. In this paper, we study the navigation ability of Autonomous Underwater Vehicles (AUVs) under the ultralow-resolution terrain map. Firstly, the low-resolution map is transformed into a continuous map by bilinear interpolation. Then, a Terrain-Aided Navigation (TAN) system based on the Particle Filter (PF) is constructed to estimate the state of AUV position by particles. Particles of a random distribution of fixed variance can effectively track targets. However, a fixed variance distribution is not well adapted to many different situations. To improve navigation accuracy and robustness, fuzzy logic is used to estimate the distribution variance of particles under the current terrain gradient dynamically. The simulation results show that our proposed Fuzzy-PF TAN system is robust under various current disturbance situations. The position error of our system is within a map resolution unit of 500 m.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Altitude</subject><subject>Artificial Intelligence</subject><subject>Autonomous underwater vehicles</subject><subject>Computational Intelligence</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Fuzzy logic</subject><subject>Ice environments</subject><subject>Interpolation</subject><subject>Localization</subject><subject>Magnetic fields</subject><subject>Management Science</subject><subject>Normal distribution</subject><subject>Operations Research</subject><subject>Position errors</subject><subject>Robustness (mathematics)</subject><subject>Sensors</subject><subject>Terrain mapping</subject><subject>Terrain referenced navigation</subject><subject>Tracking</subject><subject>Variance</subject><issn>1562-2479</issn><issn>2199-3211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMFKAzEQhoMoWLQv4GnBc3QyyW42x1qsCkUFq9eQ3WRrpO7WZGtpn97oCt48zTB83z_wE3LG4IIByMsooGQ5BQQKDISk2wMyQqYU5cjYIRmxvECKQqpjMo7RV8AZFjwv-Ii8PPUbu8u6NutfXTYJde_r7Lm1LmxN70K2cCEY39KJt85m9-bTL03vE35lYjqkZbbZ73f00YRkrlw286vknZKjxqyiG__OE7KYXS-mt3T-cHM3ncxpLQB7Kipm8wbypmmsRRRQG1lD6cDyihW1LEEhlk2TSymFlNaCKpQpRaUcl8D5CTkfYteh-9i42Ou3bhPa9FGj4lwgIkCicKDq0MUYXKPXwb-bsNMM9HeDemhQpwb1T4N6myQ-SDHB7dKFv-h_rC956nNZ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Liu, Yanji</creator><creator>Zhang, Guichen</creator><creator>Huang, Zhijian</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20210601</creationdate><title>Study on the Arctic Underwater Terrain-Aided Navigation Based on Fuzzy-Particle Filter</title><author>Liu, Yanji ; Zhang, Guichen ; Huang, Zhijian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-4b1d5f05fffdd2240ca7c08e0d3b16c7809228ff5777477dd0969a84b9e37033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Altitude</topic><topic>Artificial Intelligence</topic><topic>Autonomous underwater vehicles</topic><topic>Computational Intelligence</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Fuzzy logic</topic><topic>Ice environments</topic><topic>Interpolation</topic><topic>Localization</topic><topic>Magnetic fields</topic><topic>Management Science</topic><topic>Normal distribution</topic><topic>Operations Research</topic><topic>Position errors</topic><topic>Robustness (mathematics)</topic><topic>Sensors</topic><topic>Terrain mapping</topic><topic>Terrain referenced navigation</topic><topic>Tracking</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yanji</creatorcontrib><creatorcontrib>Zhang, Guichen</creatorcontrib><creatorcontrib>Huang, Zhijian</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yanji</au><au>Zhang, Guichen</au><au>Huang, Zhijian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on the Arctic Underwater Terrain-Aided Navigation Based on Fuzzy-Particle Filter</atitle><jtitle>International journal of fuzzy systems</jtitle><stitle>Int. J. Fuzzy Syst</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>23</volume><issue>4</issue><spage>1017</spage><epage>1026</epage><pages>1017-1026</pages><issn>1562-2479</issn><eissn>2199-3211</eissn><abstract>The ultra-low resolution underwater terrain maps of the Arctic region reduce the localization and navigation accuracy of the underwater vehicle relying on terrain-aided navigation. In this paper, we study the navigation ability of Autonomous Underwater Vehicles (AUVs) under the ultralow-resolution terrain map. Firstly, the low-resolution map is transformed into a continuous map by bilinear interpolation. Then, a Terrain-Aided Navigation (TAN) system based on the Particle Filter (PF) is constructed to estimate the state of AUV position by particles. Particles of a random distribution of fixed variance can effectively track targets. However, a fixed variance distribution is not well adapted to many different situations. To improve navigation accuracy and robustness, fuzzy logic is used to estimate the distribution variance of particles under the current terrain gradient dynamically. The simulation results show that our proposed Fuzzy-PF TAN system is robust under various current disturbance situations. The position error of our system is within a map resolution unit of 500 m.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40815-020-01047-w</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1562-2479 |
ispartof | International journal of fuzzy systems, 2021-06, Vol.23 (4), p.1017-1026 |
issn | 1562-2479 2199-3211 |
language | eng |
recordid | cdi_proquest_journals_2933422200 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Accuracy Algorithms Altitude Artificial Intelligence Autonomous underwater vehicles Computational Intelligence Energy consumption Engineering Fuzzy logic Ice environments Interpolation Localization Magnetic fields Management Science Normal distribution Operations Research Position errors Robustness (mathematics) Sensors Terrain mapping Terrain referenced navigation Tracking Variance |
title | Study on the Arctic Underwater Terrain-Aided Navigation Based on Fuzzy-Particle Filter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A45%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20the%20Arctic%20Underwater%20Terrain-Aided%20Navigation%20Based%20on%20Fuzzy-Particle%20Filter&rft.jtitle=International%20journal%20of%20fuzzy%20systems&rft.au=Liu,%20Yanji&rft.date=2021-06-01&rft.volume=23&rft.issue=4&rft.spage=1017&rft.epage=1026&rft.pages=1017-1026&rft.issn=1562-2479&rft.eissn=2199-3211&rft_id=info:doi/10.1007/s40815-020-01047-w&rft_dat=%3Cproquest_cross%3E2933422200%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933422200&rft_id=info:pmid/&rfr_iscdi=true |