Study on the Arctic Underwater Terrain-Aided Navigation Based on Fuzzy-Particle Filter

The ultra-low resolution underwater terrain maps of the Arctic region reduce the localization and navigation accuracy of the underwater vehicle relying on terrain-aided navigation. In this paper, we study the navigation ability of Autonomous Underwater Vehicles (AUVs) under the ultralow-resolution t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fuzzy systems 2021-06, Vol.23 (4), p.1017-1026
Hauptverfasser: Liu, Yanji, Zhang, Guichen, Huang, Zhijian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1026
container_issue 4
container_start_page 1017
container_title International journal of fuzzy systems
container_volume 23
creator Liu, Yanji
Zhang, Guichen
Huang, Zhijian
description The ultra-low resolution underwater terrain maps of the Arctic region reduce the localization and navigation accuracy of the underwater vehicle relying on terrain-aided navigation. In this paper, we study the navigation ability of Autonomous Underwater Vehicles (AUVs) under the ultralow-resolution terrain map. Firstly, the low-resolution map is transformed into a continuous map by bilinear interpolation. Then, a Terrain-Aided Navigation (TAN) system based on the Particle Filter (PF) is constructed to estimate the state of AUV position by particles. Particles of a random distribution of fixed variance can effectively track targets. However, a fixed variance distribution is not well adapted to many different situations. To improve navigation accuracy and robustness, fuzzy logic is used to estimate the distribution variance of particles under the current terrain gradient dynamically. The simulation results show that our proposed Fuzzy-PF TAN system is robust under various current disturbance situations. The position error of our system is within a map resolution unit of 500 m.
doi_str_mv 10.1007/s40815-020-01047-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933422200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933422200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-4b1d5f05fffdd2240ca7c08e0d3b16c7809228ff5777477dd0969a84b9e37033</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWLQv4GnBc3QyyW42x1qsCkUFq9eQ3WRrpO7WZGtpn97oCt48zTB83z_wE3LG4IIByMsooGQ5BQQKDISk2wMyQqYU5cjYIRmxvECKQqpjMo7RV8AZFjwv-Ii8PPUbu8u6NutfXTYJde_r7Lm1LmxN70K2cCEY39KJt85m9-bTL03vE35lYjqkZbbZ73f00YRkrlw286vknZKjxqyiG__OE7KYXS-mt3T-cHM3ncxpLQB7Kipm8wbypmmsRRRQG1lD6cDyihW1LEEhlk2TSymFlNaCKpQpRaUcl8D5CTkfYteh-9i42Ou3bhPa9FGj4lwgIkCicKDq0MUYXKPXwb-bsNMM9HeDemhQpwb1T4N6myQ-SDHB7dKFv-h_rC956nNZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933422200</pqid></control><display><type>article</type><title>Study on the Arctic Underwater Terrain-Aided Navigation Based on Fuzzy-Particle Filter</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Liu, Yanji ; Zhang, Guichen ; Huang, Zhijian</creator><creatorcontrib>Liu, Yanji ; Zhang, Guichen ; Huang, Zhijian</creatorcontrib><description>The ultra-low resolution underwater terrain maps of the Arctic region reduce the localization and navigation accuracy of the underwater vehicle relying on terrain-aided navigation. In this paper, we study the navigation ability of Autonomous Underwater Vehicles (AUVs) under the ultralow-resolution terrain map. Firstly, the low-resolution map is transformed into a continuous map by bilinear interpolation. Then, a Terrain-Aided Navigation (TAN) system based on the Particle Filter (PF) is constructed to estimate the state of AUV position by particles. Particles of a random distribution of fixed variance can effectively track targets. However, a fixed variance distribution is not well adapted to many different situations. To improve navigation accuracy and robustness, fuzzy logic is used to estimate the distribution variance of particles under the current terrain gradient dynamically. The simulation results show that our proposed Fuzzy-PF TAN system is robust under various current disturbance situations. The position error of our system is within a map resolution unit of 500 m.</description><identifier>ISSN: 1562-2479</identifier><identifier>EISSN: 2199-3211</identifier><identifier>DOI: 10.1007/s40815-020-01047-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Altitude ; Artificial Intelligence ; Autonomous underwater vehicles ; Computational Intelligence ; Energy consumption ; Engineering ; Fuzzy logic ; Ice environments ; Interpolation ; Localization ; Magnetic fields ; Management Science ; Normal distribution ; Operations Research ; Position errors ; Robustness (mathematics) ; Sensors ; Terrain mapping ; Terrain referenced navigation ; Tracking ; Variance</subject><ispartof>International journal of fuzzy systems, 2021-06, Vol.23 (4), p.1017-1026</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-4b1d5f05fffdd2240ca7c08e0d3b16c7809228ff5777477dd0969a84b9e37033</citedby><cites>FETCH-LOGICAL-c402t-4b1d5f05fffdd2240ca7c08e0d3b16c7809228ff5777477dd0969a84b9e37033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40815-020-01047-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2933422200?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,41469,42538,43786,51300,64364,64368,72218</link.rule.ids></links><search><creatorcontrib>Liu, Yanji</creatorcontrib><creatorcontrib>Zhang, Guichen</creatorcontrib><creatorcontrib>Huang, Zhijian</creatorcontrib><title>Study on the Arctic Underwater Terrain-Aided Navigation Based on Fuzzy-Particle Filter</title><title>International journal of fuzzy systems</title><addtitle>Int. J. Fuzzy Syst</addtitle><description>The ultra-low resolution underwater terrain maps of the Arctic region reduce the localization and navigation accuracy of the underwater vehicle relying on terrain-aided navigation. In this paper, we study the navigation ability of Autonomous Underwater Vehicles (AUVs) under the ultralow-resolution terrain map. Firstly, the low-resolution map is transformed into a continuous map by bilinear interpolation. Then, a Terrain-Aided Navigation (TAN) system based on the Particle Filter (PF) is constructed to estimate the state of AUV position by particles. Particles of a random distribution of fixed variance can effectively track targets. However, a fixed variance distribution is not well adapted to many different situations. To improve navigation accuracy and robustness, fuzzy logic is used to estimate the distribution variance of particles under the current terrain gradient dynamically. The simulation results show that our proposed Fuzzy-PF TAN system is robust under various current disturbance situations. The position error of our system is within a map resolution unit of 500 m.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Altitude</subject><subject>Artificial Intelligence</subject><subject>Autonomous underwater vehicles</subject><subject>Computational Intelligence</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Fuzzy logic</subject><subject>Ice environments</subject><subject>Interpolation</subject><subject>Localization</subject><subject>Magnetic fields</subject><subject>Management Science</subject><subject>Normal distribution</subject><subject>Operations Research</subject><subject>Position errors</subject><subject>Robustness (mathematics)</subject><subject>Sensors</subject><subject>Terrain mapping</subject><subject>Terrain referenced navigation</subject><subject>Tracking</subject><subject>Variance</subject><issn>1562-2479</issn><issn>2199-3211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMFKAzEQhoMoWLQv4GnBc3QyyW42x1qsCkUFq9eQ3WRrpO7WZGtpn97oCt48zTB83z_wE3LG4IIByMsooGQ5BQQKDISk2wMyQqYU5cjYIRmxvECKQqpjMo7RV8AZFjwv-Ii8PPUbu8u6NutfXTYJde_r7Lm1LmxN70K2cCEY39KJt85m9-bTL03vE35lYjqkZbbZ73f00YRkrlw286vknZKjxqyiG__OE7KYXS-mt3T-cHM3ncxpLQB7Kipm8wbypmmsRRRQG1lD6cDyihW1LEEhlk2TSymFlNaCKpQpRaUcl8D5CTkfYteh-9i42Ou3bhPa9FGj4lwgIkCicKDq0MUYXKPXwb-bsNMM9HeDemhQpwb1T4N6myQ-SDHB7dKFv-h_rC956nNZ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Liu, Yanji</creator><creator>Zhang, Guichen</creator><creator>Huang, Zhijian</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20210601</creationdate><title>Study on the Arctic Underwater Terrain-Aided Navigation Based on Fuzzy-Particle Filter</title><author>Liu, Yanji ; Zhang, Guichen ; Huang, Zhijian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-4b1d5f05fffdd2240ca7c08e0d3b16c7809228ff5777477dd0969a84b9e37033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Altitude</topic><topic>Artificial Intelligence</topic><topic>Autonomous underwater vehicles</topic><topic>Computational Intelligence</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Fuzzy logic</topic><topic>Ice environments</topic><topic>Interpolation</topic><topic>Localization</topic><topic>Magnetic fields</topic><topic>Management Science</topic><topic>Normal distribution</topic><topic>Operations Research</topic><topic>Position errors</topic><topic>Robustness (mathematics)</topic><topic>Sensors</topic><topic>Terrain mapping</topic><topic>Terrain referenced navigation</topic><topic>Tracking</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yanji</creatorcontrib><creatorcontrib>Zhang, Guichen</creatorcontrib><creatorcontrib>Huang, Zhijian</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yanji</au><au>Zhang, Guichen</au><au>Huang, Zhijian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on the Arctic Underwater Terrain-Aided Navigation Based on Fuzzy-Particle Filter</atitle><jtitle>International journal of fuzzy systems</jtitle><stitle>Int. J. Fuzzy Syst</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>23</volume><issue>4</issue><spage>1017</spage><epage>1026</epage><pages>1017-1026</pages><issn>1562-2479</issn><eissn>2199-3211</eissn><abstract>The ultra-low resolution underwater terrain maps of the Arctic region reduce the localization and navigation accuracy of the underwater vehicle relying on terrain-aided navigation. In this paper, we study the navigation ability of Autonomous Underwater Vehicles (AUVs) under the ultralow-resolution terrain map. Firstly, the low-resolution map is transformed into a continuous map by bilinear interpolation. Then, a Terrain-Aided Navigation (TAN) system based on the Particle Filter (PF) is constructed to estimate the state of AUV position by particles. Particles of a random distribution of fixed variance can effectively track targets. However, a fixed variance distribution is not well adapted to many different situations. To improve navigation accuracy and robustness, fuzzy logic is used to estimate the distribution variance of particles under the current terrain gradient dynamically. The simulation results show that our proposed Fuzzy-PF TAN system is robust under various current disturbance situations. The position error of our system is within a map resolution unit of 500 m.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40815-020-01047-w</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1562-2479
ispartof International journal of fuzzy systems, 2021-06, Vol.23 (4), p.1017-1026
issn 1562-2479
2199-3211
language eng
recordid cdi_proquest_journals_2933422200
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Accuracy
Algorithms
Altitude
Artificial Intelligence
Autonomous underwater vehicles
Computational Intelligence
Energy consumption
Engineering
Fuzzy logic
Ice environments
Interpolation
Localization
Magnetic fields
Management Science
Normal distribution
Operations Research
Position errors
Robustness (mathematics)
Sensors
Terrain mapping
Terrain referenced navigation
Tracking
Variance
title Study on the Arctic Underwater Terrain-Aided Navigation Based on Fuzzy-Particle Filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A45%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20the%20Arctic%20Underwater%20Terrain-Aided%20Navigation%20Based%20on%20Fuzzy-Particle%20Filter&rft.jtitle=International%20journal%20of%20fuzzy%20systems&rft.au=Liu,%20Yanji&rft.date=2021-06-01&rft.volume=23&rft.issue=4&rft.spage=1017&rft.epage=1026&rft.pages=1017-1026&rft.issn=1562-2479&rft.eissn=2199-3211&rft_id=info:doi/10.1007/s40815-020-01047-w&rft_dat=%3Cproquest_cross%3E2933422200%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933422200&rft_id=info:pmid/&rfr_iscdi=true