Harnessing Electrochemical‐Mechanical Couplings to Improve the Reliability of Solid‐State Batteries
One key barrier to using lithium‐metal anode batteries is that metal dendrites can penetrate solid electrolytes, causing short‐circuits and battery failures. It is established that this failure is likely caused by crack propagation due to electrodeposition‐induced stresses from lithium metal. This s...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2024-03, Vol.14 (9), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 14 |
creator | Monismith, Scott Fincher, Cole D. Chiang, Yet‐Ming Qu, Jianmin Dingreville, Rémi |
description | One key barrier to using lithium‐metal anode batteries is that metal dendrites can penetrate solid electrolytes, causing short‐circuits and battery failures. It is established that this failure is likely caused by crack propagation due to electrodeposition‐induced stresses from lithium metal. This study explores ways to harness these electrochemical‐mechanical couplings to control dendrite growth and improve battery reliability using a phase‐field model and targeted fracture experiments. The results show that dendrite growth can be effectively mitigated by applying mechanical stresses or tailoring the material's fracture toughness. This study also outlines the requirements for compressive stress to halt or deflect dendrites as a function of the overpotential and discusses the role of microstructure in this process.
Lithium dendrite penetration in solid‐state batteries can be arrested or deflected by applying lateral mechanical stresses or tailoring the material's fracture toughness ahead of the crack tip, taking advantage of the electrochemical‐mechanical couplings driving crack propagation. |
doi_str_mv | 10.1002/aenm.202303567 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933422009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933422009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3577-3e72adb0ba1c46dada64158b8f9a71f81c0d6b5252422b73b21f3ff17b161db63</originalsourceid><addsrcrecordid>eNqFkMtOAjEUhhujiQTZum7ierCXuS6RoJCAJqLrpu20UNKZwbZo2PkIPqNPYgkGl57NOSf5v3P5AbjGaIgRIrdctc2QIEIRzfLiDPRwjtMkL1N0fqopuQQD7zcoRlphRGkPrKbctcp7067gxCoZXCfXqjGS2-_Pr4WSa94eGjjudlsbVR6GDs6areveFQxrBZ-VNVwYa8IedhouO2vqiC4DDwre8RCUM8pfgQvNrVeD39wHr_eTl_E0mT89zMajeSJpVhQJVQXhtUCCY5nmNa95nuKsFKWueIF1iSWqc5GRjKSEiIIKgjXVGhci_liLnPbBzXFuPPBtp3xgm27n2riSkYrSSCFURdXwqJKu894pzbbONNztGUbs4Cc7-MlOfkagOgIfxqr9P2o2mjwu_tgf22N8fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933422009</pqid></control><display><type>article</type><title>Harnessing Electrochemical‐Mechanical Couplings to Improve the Reliability of Solid‐State Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Monismith, Scott ; Fincher, Cole D. ; Chiang, Yet‐Ming ; Qu, Jianmin ; Dingreville, Rémi</creator><creatorcontrib>Monismith, Scott ; Fincher, Cole D. ; Chiang, Yet‐Ming ; Qu, Jianmin ; Dingreville, Rémi</creatorcontrib><description>One key barrier to using lithium‐metal anode batteries is that metal dendrites can penetrate solid electrolytes, causing short‐circuits and battery failures. It is established that this failure is likely caused by crack propagation due to electrodeposition‐induced stresses from lithium metal. This study explores ways to harness these electrochemical‐mechanical couplings to control dendrite growth and improve battery reliability using a phase‐field model and targeted fracture experiments. The results show that dendrite growth can be effectively mitigated by applying mechanical stresses or tailoring the material's fracture toughness. This study also outlines the requirements for compressive stress to halt or deflect dendrites as a function of the overpotential and discusses the role of microstructure in this process.
Lithium dendrite penetration in solid‐state batteries can be arrested or deflected by applying lateral mechanical stresses or tailoring the material's fracture toughness ahead of the crack tip, taking advantage of the electrochemical‐mechanical couplings driving crack propagation.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202303567</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Compressive properties ; Couplings ; crack propagation ; dendrite growth ; Fracture toughness ; Lithium ; Li‐metal batteries ; Molten salt electrolytes ; Reliability ; short circuit ; Solid electrolytes ; solid‐state batteries ; Stresses</subject><ispartof>Advanced energy materials, 2024-03, Vol.14 (9), p.n/a</ispartof><rights>2023 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3577-3e72adb0ba1c46dada64158b8f9a71f81c0d6b5252422b73b21f3ff17b161db63</citedby><cites>FETCH-LOGICAL-c3577-3e72adb0ba1c46dada64158b8f9a71f81c0d6b5252422b73b21f3ff17b161db63</cites><orcidid>0000-0001-6833-1699 ; 0000-0002-0833-7674 ; 0000-0002-8009-7484 ; 0000-0003-1613-695X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202303567$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202303567$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Monismith, Scott</creatorcontrib><creatorcontrib>Fincher, Cole D.</creatorcontrib><creatorcontrib>Chiang, Yet‐Ming</creatorcontrib><creatorcontrib>Qu, Jianmin</creatorcontrib><creatorcontrib>Dingreville, Rémi</creatorcontrib><title>Harnessing Electrochemical‐Mechanical Couplings to Improve the Reliability of Solid‐State Batteries</title><title>Advanced energy materials</title><description>One key barrier to using lithium‐metal anode batteries is that metal dendrites can penetrate solid electrolytes, causing short‐circuits and battery failures. It is established that this failure is likely caused by crack propagation due to electrodeposition‐induced stresses from lithium metal. This study explores ways to harness these electrochemical‐mechanical couplings to control dendrite growth and improve battery reliability using a phase‐field model and targeted fracture experiments. The results show that dendrite growth can be effectively mitigated by applying mechanical stresses or tailoring the material's fracture toughness. This study also outlines the requirements for compressive stress to halt or deflect dendrites as a function of the overpotential and discusses the role of microstructure in this process.
Lithium dendrite penetration in solid‐state batteries can be arrested or deflected by applying lateral mechanical stresses or tailoring the material's fracture toughness ahead of the crack tip, taking advantage of the electrochemical‐mechanical couplings driving crack propagation.</description><subject>Compressive properties</subject><subject>Couplings</subject><subject>crack propagation</subject><subject>dendrite growth</subject><subject>Fracture toughness</subject><subject>Lithium</subject><subject>Li‐metal batteries</subject><subject>Molten salt electrolytes</subject><subject>Reliability</subject><subject>short circuit</subject><subject>Solid electrolytes</subject><subject>solid‐state batteries</subject><subject>Stresses</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkMtOAjEUhhujiQTZum7ierCXuS6RoJCAJqLrpu20UNKZwbZo2PkIPqNPYgkGl57NOSf5v3P5AbjGaIgRIrdctc2QIEIRzfLiDPRwjtMkL1N0fqopuQQD7zcoRlphRGkPrKbctcp7067gxCoZXCfXqjGS2-_Pr4WSa94eGjjudlsbVR6GDs6areveFQxrBZ-VNVwYa8IedhouO2vqiC4DDwre8RCUM8pfgQvNrVeD39wHr_eTl_E0mT89zMajeSJpVhQJVQXhtUCCY5nmNa95nuKsFKWueIF1iSWqc5GRjKSEiIIKgjXVGhci_liLnPbBzXFuPPBtp3xgm27n2riSkYrSSCFURdXwqJKu894pzbbONNztGUbs4Cc7-MlOfkagOgIfxqr9P2o2mjwu_tgf22N8fw</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Monismith, Scott</creator><creator>Fincher, Cole D.</creator><creator>Chiang, Yet‐Ming</creator><creator>Qu, Jianmin</creator><creator>Dingreville, Rémi</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6833-1699</orcidid><orcidid>https://orcid.org/0000-0002-0833-7674</orcidid><orcidid>https://orcid.org/0000-0002-8009-7484</orcidid><orcidid>https://orcid.org/0000-0003-1613-695X</orcidid></search><sort><creationdate>20240301</creationdate><title>Harnessing Electrochemical‐Mechanical Couplings to Improve the Reliability of Solid‐State Batteries</title><author>Monismith, Scott ; Fincher, Cole D. ; Chiang, Yet‐Ming ; Qu, Jianmin ; Dingreville, Rémi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3577-3e72adb0ba1c46dada64158b8f9a71f81c0d6b5252422b73b21f3ff17b161db63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Compressive properties</topic><topic>Couplings</topic><topic>crack propagation</topic><topic>dendrite growth</topic><topic>Fracture toughness</topic><topic>Lithium</topic><topic>Li‐metal batteries</topic><topic>Molten salt electrolytes</topic><topic>Reliability</topic><topic>short circuit</topic><topic>Solid electrolytes</topic><topic>solid‐state batteries</topic><topic>Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monismith, Scott</creatorcontrib><creatorcontrib>Fincher, Cole D.</creatorcontrib><creatorcontrib>Chiang, Yet‐Ming</creatorcontrib><creatorcontrib>Qu, Jianmin</creatorcontrib><creatorcontrib>Dingreville, Rémi</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monismith, Scott</au><au>Fincher, Cole D.</au><au>Chiang, Yet‐Ming</au><au>Qu, Jianmin</au><au>Dingreville, Rémi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing Electrochemical‐Mechanical Couplings to Improve the Reliability of Solid‐State Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>14</volume><issue>9</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>One key barrier to using lithium‐metal anode batteries is that metal dendrites can penetrate solid electrolytes, causing short‐circuits and battery failures. It is established that this failure is likely caused by crack propagation due to electrodeposition‐induced stresses from lithium metal. This study explores ways to harness these electrochemical‐mechanical couplings to control dendrite growth and improve battery reliability using a phase‐field model and targeted fracture experiments. The results show that dendrite growth can be effectively mitigated by applying mechanical stresses or tailoring the material's fracture toughness. This study also outlines the requirements for compressive stress to halt or deflect dendrites as a function of the overpotential and discusses the role of microstructure in this process.
Lithium dendrite penetration in solid‐state batteries can be arrested or deflected by applying lateral mechanical stresses or tailoring the material's fracture toughness ahead of the crack tip, taking advantage of the electrochemical‐mechanical couplings driving crack propagation.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202303567</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6833-1699</orcidid><orcidid>https://orcid.org/0000-0002-0833-7674</orcidid><orcidid>https://orcid.org/0000-0002-8009-7484</orcidid><orcidid>https://orcid.org/0000-0003-1613-695X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2024-03, Vol.14 (9), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2933422009 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Compressive properties Couplings crack propagation dendrite growth Fracture toughness Lithium Li‐metal batteries Molten salt electrolytes Reliability short circuit Solid electrolytes solid‐state batteries Stresses |
title | Harnessing Electrochemical‐Mechanical Couplings to Improve the Reliability of Solid‐State Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A58%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20Electrochemical%E2%80%90Mechanical%20Couplings%20to%20Improve%20the%20Reliability%20of%20Solid%E2%80%90State%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Monismith,%20Scott&rft.date=2024-03-01&rft.volume=14&rft.issue=9&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202303567&rft_dat=%3Cproquest_cross%3E2933422009%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933422009&rft_id=info:pmid/&rfr_iscdi=true |