Aramid nanofiber‐reinforced poly(lactic acid) nanocomposites with enhanced thermal stability, melt‐crystallization rates, and mechanical toughness

The main goal of this study is to investigate the impact of aramid nanofiber (ANF) on enhancing various properties of poly(lactic acid) (PLA), including thermal stability, crystallization rates, melt‐rheological behavior, and mechanical properties. To achieve this, ANF fillers were produced using a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer composites 2024-03, Vol.45 (4), p.3809-3822
Hauptverfasser: Kim, Seok‐Ju, Eom, Tae‐Gyeong, Seo, Minyoung, Song, Young‐Gi, Tang, Feng, Park, Jin‐Hyeok, Jeong, Young Gyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3822
container_issue 4
container_start_page 3809
container_title Polymer composites
container_volume 45
creator Kim, Seok‐Ju
Eom, Tae‐Gyeong
Seo, Minyoung
Song, Young‐Gi
Tang, Feng
Park, Jin‐Hyeok
Jeong, Young Gyu
description The main goal of this study is to investigate the impact of aramid nanofiber (ANF) on enhancing various properties of poly(lactic acid) (PLA), including thermal stability, crystallization rates, melt‐rheological behavior, and mechanical properties. To achieve this, ANF fillers were produced using a modified deprotonation process from commercial aramid fibers, and a masterbatch (PLA/ANF = 90/10 by wt%) was prepared through solution blending and drying. The masterbatch was then combined with neat PLA through melt‐blending to create a range of PLA nanocomposites containing 1–10 wt% ANF loadings. Microscopic and spectroscopic analyses confirmed the uniform dispersion and intermolecular interaction of ANFs within the PLA matrix, respectively. As a result, the nanocomposites exhibited a slight increase in glass transition temperature with higher ANF loading, while the cold‐crystallization temperature decreased due to ANFs acting as nucleating agents during PLA crystallization. Isothermal crystallization analysis confirmed accelerated melt‐crystallization rates in nanocomposites with greater ANF content. The introduction of ANFs enhanced the thermal degradation temperature of the PLA matrix and the 700°C residue of the nanocomposites, attributed to ANFs' barrier and flame retardant effects on PLA. Moreover, the nanocomposites with higher ANF loading demonstrated superior tensile strength, strain at break, toughness, and impact strength owing to the effective bonding interactions at the interfaces between the PLA matrix and the ANF fillers. Highlights ANF‐reinforced PLA nanocomposites are prepared by masterbatch melt‐compounding. Uniform dispersion of ANFs in PLA is attained via effective interfacial bonding. ANFs boost the melt‐crystallization of the PLA matrix. ANFs enhance the thermal stability of the PLA matrix. Tensile strength and toughness of PLA are improved with higher ANF content. Aramid nanofiber‐reinforced poly(lactic acid) nanocomposites, manufactured through masterbatch melt‐compounding, exhibit good interfacial bonding, accelerated melt‐crystallization, and enhanced mechanical performance.
doi_str_mv 10.1002/pc.28030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933395486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933395486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2540-2f90b95b62b9dd1931a13291266d3644a0bd5c70e53cf710badd9dd46c4380183</originalsourceid><addsrcrecordid>eNp10MtKxDAUBuAgCo6j4CME3CjYMZc20yxl8AYDutB1SZPUiaRJTTIMdeUjuPIBfRKj49bVgcP3nwM_AMcYzTBC5GKQM1IjinbABFdlXaCK8V0wQWROipry-T44iPElS8wYnYDPyyB6o6ATznem1eHr_SNo4zofpFZw8HY8tUImI6GQRp39Qun7wUeTdIQbk1ZQu5VwPzytdOiFhTGJ1liTxnPYa5vyTRnGvLTWvIlkvINB5PQ5FE5lIXPcyJxLfv28cjrGQ7DXCRv10d-cgqfrq8fFbbG8v7lbXC4LSaoSFaTjqOVVy0jLlcKcYoEp4ZgwpigrS4FaVck50hWV3RyjViiVYclkSWuEazoFJ9u7Q_Cvax1T8-LXweWXDeGUUp4rZFmdbpUMPsagu2YIphdhbDBqflpvBtn8tp5psaUbY_X4r2seFlv_DYRYh5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933395486</pqid></control><display><type>article</type><title>Aramid nanofiber‐reinforced poly(lactic acid) nanocomposites with enhanced thermal stability, melt‐crystallization rates, and mechanical toughness</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kim, Seok‐Ju ; Eom, Tae‐Gyeong ; Seo, Minyoung ; Song, Young‐Gi ; Tang, Feng ; Park, Jin‐Hyeok ; Jeong, Young Gyu</creator><creatorcontrib>Kim, Seok‐Ju ; Eom, Tae‐Gyeong ; Seo, Minyoung ; Song, Young‐Gi ; Tang, Feng ; Park, Jin‐Hyeok ; Jeong, Young Gyu</creatorcontrib><description>The main goal of this study is to investigate the impact of aramid nanofiber (ANF) on enhancing various properties of poly(lactic acid) (PLA), including thermal stability, crystallization rates, melt‐rheological behavior, and mechanical properties. To achieve this, ANF fillers were produced using a modified deprotonation process from commercial aramid fibers, and a masterbatch (PLA/ANF = 90/10 by wt%) was prepared through solution blending and drying. The masterbatch was then combined with neat PLA through melt‐blending to create a range of PLA nanocomposites containing 1–10 wt% ANF loadings. Microscopic and spectroscopic analyses confirmed the uniform dispersion and intermolecular interaction of ANFs within the PLA matrix, respectively. As a result, the nanocomposites exhibited a slight increase in glass transition temperature with higher ANF loading, while the cold‐crystallization temperature decreased due to ANFs acting as nucleating agents during PLA crystallization. Isothermal crystallization analysis confirmed accelerated melt‐crystallization rates in nanocomposites with greater ANF content. The introduction of ANFs enhanced the thermal degradation temperature of the PLA matrix and the 700°C residue of the nanocomposites, attributed to ANFs' barrier and flame retardant effects on PLA. Moreover, the nanocomposites with higher ANF loading demonstrated superior tensile strength, strain at break, toughness, and impact strength owing to the effective bonding interactions at the interfaces between the PLA matrix and the ANF fillers. Highlights ANF‐reinforced PLA nanocomposites are prepared by masterbatch melt‐compounding. Uniform dispersion of ANFs in PLA is attained via effective interfacial bonding. ANFs boost the melt‐crystallization of the PLA matrix. ANFs enhance the thermal stability of the PLA matrix. Tensile strength and toughness of PLA are improved with higher ANF content. Aramid nanofiber‐reinforced poly(lactic acid) nanocomposites, manufactured through masterbatch melt‐compounding, exhibit good interfacial bonding, accelerated melt‐crystallization, and enhanced mechanical performance.</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.28030</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Aramid fibers ; aramid nanofiber ; Bonding strength ; Crystallization ; Dispersion ; Fillers ; Flame retardants ; Glass transition temperature ; Impact strength ; Interfacial bonding ; Mechanical properties ; mechanical property ; melt‐crystallization ; Nanocomposites ; Nanofibers ; poly(lactic acid) ; Polylactic acid ; Rheological properties ; Solution blending ; Tensile strength ; Thermal degradation ; thermal property ; Thermal stability ; Toughness</subject><ispartof>Polymer composites, 2024-03, Vol.45 (4), p.3809-3822</ispartof><rights>2023 Society of Plastics Engineers.</rights><rights>2024 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2540-2f90b95b62b9dd1931a13291266d3644a0bd5c70e53cf710badd9dd46c4380183</cites><orcidid>0000-0001-6660-1309</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpc.28030$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpc.28030$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kim, Seok‐Ju</creatorcontrib><creatorcontrib>Eom, Tae‐Gyeong</creatorcontrib><creatorcontrib>Seo, Minyoung</creatorcontrib><creatorcontrib>Song, Young‐Gi</creatorcontrib><creatorcontrib>Tang, Feng</creatorcontrib><creatorcontrib>Park, Jin‐Hyeok</creatorcontrib><creatorcontrib>Jeong, Young Gyu</creatorcontrib><title>Aramid nanofiber‐reinforced poly(lactic acid) nanocomposites with enhanced thermal stability, melt‐crystallization rates, and mechanical toughness</title><title>Polymer composites</title><description>The main goal of this study is to investigate the impact of aramid nanofiber (ANF) on enhancing various properties of poly(lactic acid) (PLA), including thermal stability, crystallization rates, melt‐rheological behavior, and mechanical properties. To achieve this, ANF fillers were produced using a modified deprotonation process from commercial aramid fibers, and a masterbatch (PLA/ANF = 90/10 by wt%) was prepared through solution blending and drying. The masterbatch was then combined with neat PLA through melt‐blending to create a range of PLA nanocomposites containing 1–10 wt% ANF loadings. Microscopic and spectroscopic analyses confirmed the uniform dispersion and intermolecular interaction of ANFs within the PLA matrix, respectively. As a result, the nanocomposites exhibited a slight increase in glass transition temperature with higher ANF loading, while the cold‐crystallization temperature decreased due to ANFs acting as nucleating agents during PLA crystallization. Isothermal crystallization analysis confirmed accelerated melt‐crystallization rates in nanocomposites with greater ANF content. The introduction of ANFs enhanced the thermal degradation temperature of the PLA matrix and the 700°C residue of the nanocomposites, attributed to ANFs' barrier and flame retardant effects on PLA. Moreover, the nanocomposites with higher ANF loading demonstrated superior tensile strength, strain at break, toughness, and impact strength owing to the effective bonding interactions at the interfaces between the PLA matrix and the ANF fillers. Highlights ANF‐reinforced PLA nanocomposites are prepared by masterbatch melt‐compounding. Uniform dispersion of ANFs in PLA is attained via effective interfacial bonding. ANFs boost the melt‐crystallization of the PLA matrix. ANFs enhance the thermal stability of the PLA matrix. Tensile strength and toughness of PLA are improved with higher ANF content. Aramid nanofiber‐reinforced poly(lactic acid) nanocomposites, manufactured through masterbatch melt‐compounding, exhibit good interfacial bonding, accelerated melt‐crystallization, and enhanced mechanical performance.</description><subject>Aramid fibers</subject><subject>aramid nanofiber</subject><subject>Bonding strength</subject><subject>Crystallization</subject><subject>Dispersion</subject><subject>Fillers</subject><subject>Flame retardants</subject><subject>Glass transition temperature</subject><subject>Impact strength</subject><subject>Interfacial bonding</subject><subject>Mechanical properties</subject><subject>mechanical property</subject><subject>melt‐crystallization</subject><subject>Nanocomposites</subject><subject>Nanofibers</subject><subject>poly(lactic acid)</subject><subject>Polylactic acid</subject><subject>Rheological properties</subject><subject>Solution blending</subject><subject>Tensile strength</subject><subject>Thermal degradation</subject><subject>thermal property</subject><subject>Thermal stability</subject><subject>Toughness</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10MtKxDAUBuAgCo6j4CME3CjYMZc20yxl8AYDutB1SZPUiaRJTTIMdeUjuPIBfRKj49bVgcP3nwM_AMcYzTBC5GKQM1IjinbABFdlXaCK8V0wQWROipry-T44iPElS8wYnYDPyyB6o6ATznem1eHr_SNo4zofpFZw8HY8tUImI6GQRp39Qun7wUeTdIQbk1ZQu5VwPzytdOiFhTGJ1liTxnPYa5vyTRnGvLTWvIlkvINB5PQ5FE5lIXPcyJxLfv28cjrGQ7DXCRv10d-cgqfrq8fFbbG8v7lbXC4LSaoSFaTjqOVVy0jLlcKcYoEp4ZgwpigrS4FaVck50hWV3RyjViiVYclkSWuEazoFJ9u7Q_Cvax1T8-LXweWXDeGUUp4rZFmdbpUMPsagu2YIphdhbDBqflpvBtn8tp5psaUbY_X4r2seFlv_DYRYh5w</recordid><startdate>20240310</startdate><enddate>20240310</enddate><creator>Kim, Seok‐Ju</creator><creator>Eom, Tae‐Gyeong</creator><creator>Seo, Minyoung</creator><creator>Song, Young‐Gi</creator><creator>Tang, Feng</creator><creator>Park, Jin‐Hyeok</creator><creator>Jeong, Young Gyu</creator><general>John Wiley &amp; Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6660-1309</orcidid></search><sort><creationdate>20240310</creationdate><title>Aramid nanofiber‐reinforced poly(lactic acid) nanocomposites with enhanced thermal stability, melt‐crystallization rates, and mechanical toughness</title><author>Kim, Seok‐Ju ; Eom, Tae‐Gyeong ; Seo, Minyoung ; Song, Young‐Gi ; Tang, Feng ; Park, Jin‐Hyeok ; Jeong, Young Gyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2540-2f90b95b62b9dd1931a13291266d3644a0bd5c70e53cf710badd9dd46c4380183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aramid fibers</topic><topic>aramid nanofiber</topic><topic>Bonding strength</topic><topic>Crystallization</topic><topic>Dispersion</topic><topic>Fillers</topic><topic>Flame retardants</topic><topic>Glass transition temperature</topic><topic>Impact strength</topic><topic>Interfacial bonding</topic><topic>Mechanical properties</topic><topic>mechanical property</topic><topic>melt‐crystallization</topic><topic>Nanocomposites</topic><topic>Nanofibers</topic><topic>poly(lactic acid)</topic><topic>Polylactic acid</topic><topic>Rheological properties</topic><topic>Solution blending</topic><topic>Tensile strength</topic><topic>Thermal degradation</topic><topic>thermal property</topic><topic>Thermal stability</topic><topic>Toughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Seok‐Ju</creatorcontrib><creatorcontrib>Eom, Tae‐Gyeong</creatorcontrib><creatorcontrib>Seo, Minyoung</creatorcontrib><creatorcontrib>Song, Young‐Gi</creatorcontrib><creatorcontrib>Tang, Feng</creatorcontrib><creatorcontrib>Park, Jin‐Hyeok</creatorcontrib><creatorcontrib>Jeong, Young Gyu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Seok‐Ju</au><au>Eom, Tae‐Gyeong</au><au>Seo, Minyoung</au><au>Song, Young‐Gi</au><au>Tang, Feng</au><au>Park, Jin‐Hyeok</au><au>Jeong, Young Gyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aramid nanofiber‐reinforced poly(lactic acid) nanocomposites with enhanced thermal stability, melt‐crystallization rates, and mechanical toughness</atitle><jtitle>Polymer composites</jtitle><date>2024-03-10</date><risdate>2024</risdate><volume>45</volume><issue>4</issue><spage>3809</spage><epage>3822</epage><pages>3809-3822</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><abstract>The main goal of this study is to investigate the impact of aramid nanofiber (ANF) on enhancing various properties of poly(lactic acid) (PLA), including thermal stability, crystallization rates, melt‐rheological behavior, and mechanical properties. To achieve this, ANF fillers were produced using a modified deprotonation process from commercial aramid fibers, and a masterbatch (PLA/ANF = 90/10 by wt%) was prepared through solution blending and drying. The masterbatch was then combined with neat PLA through melt‐blending to create a range of PLA nanocomposites containing 1–10 wt% ANF loadings. Microscopic and spectroscopic analyses confirmed the uniform dispersion and intermolecular interaction of ANFs within the PLA matrix, respectively. As a result, the nanocomposites exhibited a slight increase in glass transition temperature with higher ANF loading, while the cold‐crystallization temperature decreased due to ANFs acting as nucleating agents during PLA crystallization. Isothermal crystallization analysis confirmed accelerated melt‐crystallization rates in nanocomposites with greater ANF content. The introduction of ANFs enhanced the thermal degradation temperature of the PLA matrix and the 700°C residue of the nanocomposites, attributed to ANFs' barrier and flame retardant effects on PLA. Moreover, the nanocomposites with higher ANF loading demonstrated superior tensile strength, strain at break, toughness, and impact strength owing to the effective bonding interactions at the interfaces between the PLA matrix and the ANF fillers. Highlights ANF‐reinforced PLA nanocomposites are prepared by masterbatch melt‐compounding. Uniform dispersion of ANFs in PLA is attained via effective interfacial bonding. ANFs boost the melt‐crystallization of the PLA matrix. ANFs enhance the thermal stability of the PLA matrix. Tensile strength and toughness of PLA are improved with higher ANF content. Aramid nanofiber‐reinforced poly(lactic acid) nanocomposites, manufactured through masterbatch melt‐compounding, exhibit good interfacial bonding, accelerated melt‐crystallization, and enhanced mechanical performance.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pc.28030</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6660-1309</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0272-8397
ispartof Polymer composites, 2024-03, Vol.45 (4), p.3809-3822
issn 0272-8397
1548-0569
language eng
recordid cdi_proquest_journals_2933395486
source Wiley Online Library Journals Frontfile Complete
subjects Aramid fibers
aramid nanofiber
Bonding strength
Crystallization
Dispersion
Fillers
Flame retardants
Glass transition temperature
Impact strength
Interfacial bonding
Mechanical properties
mechanical property
melt‐crystallization
Nanocomposites
Nanofibers
poly(lactic acid)
Polylactic acid
Rheological properties
Solution blending
Tensile strength
Thermal degradation
thermal property
Thermal stability
Toughness
title Aramid nanofiber‐reinforced poly(lactic acid) nanocomposites with enhanced thermal stability, melt‐crystallization rates, and mechanical toughness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A15%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aramid%20nanofiber%E2%80%90reinforced%20poly(lactic%20acid)%20nanocomposites%20with%20enhanced%20thermal%20stability,%20melt%E2%80%90crystallization%20rates,%20and%20mechanical%20toughness&rft.jtitle=Polymer%20composites&rft.au=Kim,%20Seok%E2%80%90Ju&rft.date=2024-03-10&rft.volume=45&rft.issue=4&rft.spage=3809&rft.epage=3822&rft.pages=3809-3822&rft.issn=0272-8397&rft.eissn=1548-0569&rft_id=info:doi/10.1002/pc.28030&rft_dat=%3Cproquest_cross%3E2933395486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933395486&rft_id=info:pmid/&rfr_iscdi=true