Data mining predictive algorithms for estimating soil water content
Soil water content (SWC) plays a key role in the management of water and soil resources. Accurate prediction of SWC is an important issue in water and soil studies. Recently, some data mining and machine learning techniques were proposed for SWC prediction and achieved encouraging results. This pape...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2024-03, Vol.28 (6), p.4915-4931 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4931 |
---|---|
container_issue | 6 |
container_start_page | 4915 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 28 |
creator | Emami, Somayeh Rezaverdinejad, Vahid Dehghanisanij, Hossein Emami, Hojjat Elbeltagi, Ahmed |
description | Soil water content (SWC) plays a key role in the management of water and soil resources. Accurate prediction of SWC is an important issue in water and soil studies. Recently, some data mining and machine learning techniques were proposed for SWC prediction and achieved encouraging results. This paper presents four data mining predictive algorithms for SWC estimation. The used algorithms are random subspace ensemble, random tree (RT), reduced error-pruning tree (REPTree), and M5P. The motivation of this research is to investigate the performance of the popular data mining algorithms for SWC prediction. A benchmark dataset containing daily SWC parameters in three soil layers of 25 cm, 50 cm, and 100 cm from the Nebraska state station (central USA), Grand Island was used to evaluate the proposed techniques. Statistical indices of determination coefficient (
R
2
), root-mean-square error (RMSE), mean absolute error (MAE), root relative square error (RRMSE), and relative absolute error (RAE) were utilized to measure the performance of the proposed prediction techniques. The modeling results showed that the RT algorithm with
R
2
= 0.97, RMSE = 0.38, MAE = 0.10, RRMSE = 7.32%, and RAE = 1.82% outperformed counterpart techniques. This study concluded that the developed models will help agricultural water users, developers, and decision-makers for achieving agricultural sustainability. |
doi_str_mv | 10.1007/s00500-023-09208-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933305251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933305251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-cf67caa5b72c27836d93229d56cd33b2010c4876e9ca394069f437cd38ee65793</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAc3SS2d1sjlL_QsGLnkOazdaUdlOTVPHbm3YFb55mYH7vzeMRcsnhmgPImwRQAzAQyEAJaBkekQmvEJmspDo-7ILJpsJTcpbSCkBwWeOEzO5MNnTjBz8s6Ta6ztvsPx0162WIPr9vEu1DpC5lvzF5D6Xg1_TLZBepDUN2Qz4nJ71ZJ3fxO6fk7eH-dfbE5i-Pz7PbObPIVWa2b6Q1pl5IYYVssekUCqG6urEd4kIAB1u1snHKGlQVNKqvUJZb61xTS4VTcjX6bmP42JVIehV2cSgvtVCICLWoeaHESNkYUoqu19tYssdvzUHvy9JjWbqUpQ9laSwiHEWpwMPSxT_rf1Q_fiNr9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933305251</pqid></control><display><type>article</type><title>Data mining predictive algorithms for estimating soil water content</title><source>SpringerLink Journals - AutoHoldings</source><creator>Emami, Somayeh ; Rezaverdinejad, Vahid ; Dehghanisanij, Hossein ; Emami, Hojjat ; Elbeltagi, Ahmed</creator><creatorcontrib>Emami, Somayeh ; Rezaverdinejad, Vahid ; Dehghanisanij, Hossein ; Emami, Hojjat ; Elbeltagi, Ahmed</creatorcontrib><description>Soil water content (SWC) plays a key role in the management of water and soil resources. Accurate prediction of SWC is an important issue in water and soil studies. Recently, some data mining and machine learning techniques were proposed for SWC prediction and achieved encouraging results. This paper presents four data mining predictive algorithms for SWC estimation. The used algorithms are random subspace ensemble, random tree (RT), reduced error-pruning tree (REPTree), and M5P. The motivation of this research is to investigate the performance of the popular data mining algorithms for SWC prediction. A benchmark dataset containing daily SWC parameters in three soil layers of 25 cm, 50 cm, and 100 cm from the Nebraska state station (central USA), Grand Island was used to evaluate the proposed techniques. Statistical indices of determination coefficient (
R
2
), root-mean-square error (RMSE), mean absolute error (MAE), root relative square error (RRMSE), and relative absolute error (RAE) were utilized to measure the performance of the proposed prediction techniques. The modeling results showed that the RT algorithm with
R
2
= 0.97, RMSE = 0.38, MAE = 0.10, RRMSE = 7.32%, and RAE = 1.82% outperformed counterpart techniques. This study concluded that the developed models will help agricultural water users, developers, and decision-makers for achieving agricultural sustainability.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-023-09208-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Application of Soft Computing ; Artificial Intelligence ; Calibration ; Computational Intelligence ; Control ; Data mining ; Decision trees ; Engineering ; Error analysis ; Error reduction ; Estimation ; Machine learning ; Mathematical Logic and Foundations ; Mechatronics ; Moisture content ; Neural networks ; Predictions ; Remote sensing ; Robotics ; Root-mean-square errors ; Soil layers ; Soil water ; Support vector machines ; Topography ; Water consumption</subject><ispartof>Soft computing (Berlin, Germany), 2024-03, Vol.28 (6), p.4915-4931</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-cf67caa5b72c27836d93229d56cd33b2010c4876e9ca394069f437cd38ee65793</citedby><cites>FETCH-LOGICAL-c319t-cf67caa5b72c27836d93229d56cd33b2010c4876e9ca394069f437cd38ee65793</cites><orcidid>0000-0001-8034-4652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-023-09208-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00500-023-09208-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Emami, Somayeh</creatorcontrib><creatorcontrib>Rezaverdinejad, Vahid</creatorcontrib><creatorcontrib>Dehghanisanij, Hossein</creatorcontrib><creatorcontrib>Emami, Hojjat</creatorcontrib><creatorcontrib>Elbeltagi, Ahmed</creatorcontrib><title>Data mining predictive algorithms for estimating soil water content</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Soil water content (SWC) plays a key role in the management of water and soil resources. Accurate prediction of SWC is an important issue in water and soil studies. Recently, some data mining and machine learning techniques were proposed for SWC prediction and achieved encouraging results. This paper presents four data mining predictive algorithms for SWC estimation. The used algorithms are random subspace ensemble, random tree (RT), reduced error-pruning tree (REPTree), and M5P. The motivation of this research is to investigate the performance of the popular data mining algorithms for SWC prediction. A benchmark dataset containing daily SWC parameters in three soil layers of 25 cm, 50 cm, and 100 cm from the Nebraska state station (central USA), Grand Island was used to evaluate the proposed techniques. Statistical indices of determination coefficient (
R
2
), root-mean-square error (RMSE), mean absolute error (MAE), root relative square error (RRMSE), and relative absolute error (RAE) were utilized to measure the performance of the proposed prediction techniques. The modeling results showed that the RT algorithm with
R
2
= 0.97, RMSE = 0.38, MAE = 0.10, RRMSE = 7.32%, and RAE = 1.82% outperformed counterpart techniques. This study concluded that the developed models will help agricultural water users, developers, and decision-makers for achieving agricultural sustainability.</description><subject>Algorithms</subject><subject>Application of Soft Computing</subject><subject>Artificial Intelligence</subject><subject>Calibration</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Data mining</subject><subject>Decision trees</subject><subject>Engineering</subject><subject>Error analysis</subject><subject>Error reduction</subject><subject>Estimation</subject><subject>Machine learning</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Moisture content</subject><subject>Neural networks</subject><subject>Predictions</subject><subject>Remote sensing</subject><subject>Robotics</subject><subject>Root-mean-square errors</subject><subject>Soil layers</subject><subject>Soil water</subject><subject>Support vector machines</subject><subject>Topography</subject><subject>Water consumption</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAc3SS2d1sjlL_QsGLnkOazdaUdlOTVPHbm3YFb55mYH7vzeMRcsnhmgPImwRQAzAQyEAJaBkekQmvEJmspDo-7ILJpsJTcpbSCkBwWeOEzO5MNnTjBz8s6Ta6ztvsPx0162WIPr9vEu1DpC5lvzF5D6Xg1_TLZBepDUN2Qz4nJ71ZJ3fxO6fk7eH-dfbE5i-Pz7PbObPIVWa2b6Q1pl5IYYVssekUCqG6urEd4kIAB1u1snHKGlQVNKqvUJZb61xTS4VTcjX6bmP42JVIehV2cSgvtVCICLWoeaHESNkYUoqu19tYssdvzUHvy9JjWbqUpQ9laSwiHEWpwMPSxT_rf1Q_fiNr9Q</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Emami, Somayeh</creator><creator>Rezaverdinejad, Vahid</creator><creator>Dehghanisanij, Hossein</creator><creator>Emami, Hojjat</creator><creator>Elbeltagi, Ahmed</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-8034-4652</orcidid></search><sort><creationdate>20240301</creationdate><title>Data mining predictive algorithms for estimating soil water content</title><author>Emami, Somayeh ; Rezaverdinejad, Vahid ; Dehghanisanij, Hossein ; Emami, Hojjat ; Elbeltagi, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-cf67caa5b72c27836d93229d56cd33b2010c4876e9ca394069f437cd38ee65793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Application of Soft Computing</topic><topic>Artificial Intelligence</topic><topic>Calibration</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Data mining</topic><topic>Decision trees</topic><topic>Engineering</topic><topic>Error analysis</topic><topic>Error reduction</topic><topic>Estimation</topic><topic>Machine learning</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Moisture content</topic><topic>Neural networks</topic><topic>Predictions</topic><topic>Remote sensing</topic><topic>Robotics</topic><topic>Root-mean-square errors</topic><topic>Soil layers</topic><topic>Soil water</topic><topic>Support vector machines</topic><topic>Topography</topic><topic>Water consumption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Emami, Somayeh</creatorcontrib><creatorcontrib>Rezaverdinejad, Vahid</creatorcontrib><creatorcontrib>Dehghanisanij, Hossein</creatorcontrib><creatorcontrib>Emami, Hojjat</creatorcontrib><creatorcontrib>Elbeltagi, Ahmed</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Emami, Somayeh</au><au>Rezaverdinejad, Vahid</au><au>Dehghanisanij, Hossein</au><au>Emami, Hojjat</au><au>Elbeltagi, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data mining predictive algorithms for estimating soil water content</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>28</volume><issue>6</issue><spage>4915</spage><epage>4931</epage><pages>4915-4931</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Soil water content (SWC) plays a key role in the management of water and soil resources. Accurate prediction of SWC is an important issue in water and soil studies. Recently, some data mining and machine learning techniques were proposed for SWC prediction and achieved encouraging results. This paper presents four data mining predictive algorithms for SWC estimation. The used algorithms are random subspace ensemble, random tree (RT), reduced error-pruning tree (REPTree), and M5P. The motivation of this research is to investigate the performance of the popular data mining algorithms for SWC prediction. A benchmark dataset containing daily SWC parameters in three soil layers of 25 cm, 50 cm, and 100 cm from the Nebraska state station (central USA), Grand Island was used to evaluate the proposed techniques. Statistical indices of determination coefficient (
R
2
), root-mean-square error (RMSE), mean absolute error (MAE), root relative square error (RRMSE), and relative absolute error (RAE) were utilized to measure the performance of the proposed prediction techniques. The modeling results showed that the RT algorithm with
R
2
= 0.97, RMSE = 0.38, MAE = 0.10, RRMSE = 7.32%, and RAE = 1.82% outperformed counterpart techniques. This study concluded that the developed models will help agricultural water users, developers, and decision-makers for achieving agricultural sustainability.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-023-09208-3</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8034-4652</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2024-03, Vol.28 (6), p.4915-4931 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2933305251 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Application of Soft Computing Artificial Intelligence Calibration Computational Intelligence Control Data mining Decision trees Engineering Error analysis Error reduction Estimation Machine learning Mathematical Logic and Foundations Mechatronics Moisture content Neural networks Predictions Remote sensing Robotics Root-mean-square errors Soil layers Soil water Support vector machines Topography Water consumption |
title | Data mining predictive algorithms for estimating soil water content |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A57%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20mining%20predictive%20algorithms%20for%20estimating%20soil%20water%20content&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Emami,%20Somayeh&rft.date=2024-03-01&rft.volume=28&rft.issue=6&rft.spage=4915&rft.epage=4931&rft.pages=4915-4931&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-023-09208-3&rft_dat=%3Cproquest_cross%3E2933305251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933305251&rft_id=info:pmid/&rfr_iscdi=true |