A Wide Neighborhood Interior-Point Method for Cartesian P∗(κ)-LCP over Symmetric Cones

In this paper, we propose an infeasible-interior-point method, based on a new wide neighborhood of the central path, for linear complementarity problems over symmetric cones with the Cartesian P∗(κ)-property. The convergence is shown for commutative class of search directions. Moreover, we analyze t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Operations Research Society of China (Internet) 2015-09, Vol.3 (3), p.331-345
Hauptverfasser: Sayadi Shahraki, Marzieh, Mansouri, Hossein, Zangiabadi, Maryam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 345
container_issue 3
container_start_page 331
container_title Journal of the Operations Research Society of China (Internet)
container_volume 3
creator Sayadi Shahraki, Marzieh
Mansouri, Hossein
Zangiabadi, Maryam
description In this paper, we propose an infeasible-interior-point method, based on a new wide neighborhood of the central path, for linear complementarity problems over symmetric cones with the Cartesian P∗(κ)-property. The convergence is shown for commutative class of search directions. Moreover, we analyze the algorithm and obtain the complexity bounds, which coincide with the best-known results for the Cartesian P∗(κ)-SCLCPs. Some numerical tests are reported to illustrate our theoretical results.
doi_str_mv 10.1007/s40305-015-0094-y
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2933273661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933273661</sourcerecordid><originalsourceid>FETCH-LOGICAL-p226t-f0add58813952f2aadb5728b088f77edd212aa0bdfcf7e8cac9abd2e22cc424b3</originalsourceid><addsrcrecordid>eNo9jU9KAzEchYMoWGoP4C7gRhfR5JfJTGZZBv8UqhZU1FVJJomN2ElNUqE38AbexUN4CE_igOLi8T6-xXsI7TN6zCitTlJBORWEsj60LshmCw2A9VCWtdz-Z_mwi0YpeU0FSCFKygbocYzvvbH4yvqnhQ5xEYLBky7b6EMks-C7jC9tXvTWhYgbFbNNXnV49v3-cfj1eUSmzQyHNxvxzWa5tDn6Fjehs2kP7Tj1kuzor4fo7uz0trkg0-vzSTOekhVAmYmjyhghJeO1AAdKGS0qkJpK6arKGgOsl1Qb17rKyla1tdIGLEDbFlBoPkQHv7urGF7XNuX5c1jHrr-cQ805VLwsGf8BBc5Xfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933273661</pqid></control><display><type>article</type><title>A Wide Neighborhood Interior-Point Method for Cartesian P∗(κ)-LCP over Symmetric Cones</title><source>ProQuest Central (Alumni Edition)</source><source>SpringerNature Journals</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Sayadi Shahraki, Marzieh ; Mansouri, Hossein ; Zangiabadi, Maryam</creator><creatorcontrib>Sayadi Shahraki, Marzieh ; Mansouri, Hossein ; Zangiabadi, Maryam</creatorcontrib><description>In this paper, we propose an infeasible-interior-point method, based on a new wide neighborhood of the central path, for linear complementarity problems over symmetric cones with the Cartesian P∗(κ)-property. The convergence is shown for commutative class of search directions. Moreover, we analyze the algorithm and obtain the complexity bounds, which coincide with the best-known results for the Cartesian P∗(κ)-SCLCPs. Some numerical tests are reported to illustrate our theoretical results.</description><identifier>ISSN: 2194-668X</identifier><identifier>EISSN: 2194-6698</identifier><identifier>DOI: 10.1007/s40305-015-0094-y</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Algebra ; Algorithms ; Cartesian coordinates ; Cones ; Linear programming ; Neighborhoods ; Optimization</subject><ispartof>Journal of the Operations Research Society of China (Internet), 2015-09, Vol.3 (3), p.331-345</ispartof><rights>Operations Research Society of China, Periodicals Agency of Shanghai University, Science Press, and Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2933273661?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21392,21393,21395,27928,27929,33534,33748,34009,43663,43809,43957,64389,64393,72473</link.rule.ids></links><search><creatorcontrib>Sayadi Shahraki, Marzieh</creatorcontrib><creatorcontrib>Mansouri, Hossein</creatorcontrib><creatorcontrib>Zangiabadi, Maryam</creatorcontrib><title>A Wide Neighborhood Interior-Point Method for Cartesian P∗(κ)-LCP over Symmetric Cones</title><title>Journal of the Operations Research Society of China (Internet)</title><description>In this paper, we propose an infeasible-interior-point method, based on a new wide neighborhood of the central path, for linear complementarity problems over symmetric cones with the Cartesian P∗(κ)-property. The convergence is shown for commutative class of search directions. Moreover, we analyze the algorithm and obtain the complexity bounds, which coincide with the best-known results for the Cartesian P∗(κ)-SCLCPs. Some numerical tests are reported to illustrate our theoretical results.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Cartesian coordinates</subject><subject>Cones</subject><subject>Linear programming</subject><subject>Neighborhoods</subject><subject>Optimization</subject><issn>2194-668X</issn><issn>2194-6698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9jU9KAzEchYMoWGoP4C7gRhfR5JfJTGZZBv8UqhZU1FVJJomN2ElNUqE38AbexUN4CE_igOLi8T6-xXsI7TN6zCitTlJBORWEsj60LshmCw2A9VCWtdz-Z_mwi0YpeU0FSCFKygbocYzvvbH4yvqnhQ5xEYLBky7b6EMks-C7jC9tXvTWhYgbFbNNXnV49v3-cfj1eUSmzQyHNxvxzWa5tDn6Fjehs2kP7Tj1kuzor4fo7uz0trkg0-vzSTOekhVAmYmjyhghJeO1AAdKGS0qkJpK6arKGgOsl1Qb17rKyla1tdIGLEDbFlBoPkQHv7urGF7XNuX5c1jHrr-cQ805VLwsGf8BBc5Xfw</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Sayadi Shahraki, Marzieh</creator><creator>Mansouri, Hossein</creator><creator>Zangiabadi, Maryam</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7RO</scope><scope>7XB</scope><scope>8AI</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AXJJW</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FREBS</scope><scope>FRNLG</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L6V</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150901</creationdate><title>A Wide Neighborhood Interior-Point Method for Cartesian P∗(κ)-LCP over Symmetric Cones</title><author>Sayadi Shahraki, Marzieh ; Mansouri, Hossein ; Zangiabadi, Maryam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p226t-f0add58813952f2aadb5728b088f77edd212aa0bdfcf7e8cac9abd2e22cc424b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Cartesian coordinates</topic><topic>Cones</topic><topic>Linear programming</topic><topic>Neighborhoods</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sayadi Shahraki, Marzieh</creatorcontrib><creatorcontrib>Mansouri, Hossein</creatorcontrib><creatorcontrib>Zangiabadi, Maryam</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Asian Business Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Asian Business Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Asian &amp; European Business Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Asian &amp; European Business Collection (Alumni)</collection><collection>Business Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the Operations Research Society of China (Internet)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sayadi Shahraki, Marzieh</au><au>Mansouri, Hossein</au><au>Zangiabadi, Maryam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Wide Neighborhood Interior-Point Method for Cartesian P∗(κ)-LCP over Symmetric Cones</atitle><jtitle>Journal of the Operations Research Society of China (Internet)</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>3</volume><issue>3</issue><spage>331</spage><epage>345</epage><pages>331-345</pages><issn>2194-668X</issn><eissn>2194-6698</eissn><abstract>In this paper, we propose an infeasible-interior-point method, based on a new wide neighborhood of the central path, for linear complementarity problems over symmetric cones with the Cartesian P∗(κ)-property. The convergence is shown for commutative class of search directions. Moreover, we analyze the algorithm and obtain the complexity bounds, which coincide with the best-known results for the Cartesian P∗(κ)-SCLCPs. Some numerical tests are reported to illustrate our theoretical results.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s40305-015-0094-y</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2194-668X
ispartof Journal of the Operations Research Society of China (Internet), 2015-09, Vol.3 (3), p.331-345
issn 2194-668X
2194-6698
language eng
recordid cdi_proquest_journals_2933273661
source ProQuest Central (Alumni Edition); SpringerNature Journals; ProQuest Central Korea; ProQuest Central UK/Ireland; ProQuest Central
subjects Algebra
Algorithms
Cartesian coordinates
Cones
Linear programming
Neighborhoods
Optimization
title A Wide Neighborhood Interior-Point Method for Cartesian P∗(κ)-LCP over Symmetric Cones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A07%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Wide%20Neighborhood%20Interior-Point%20Method%20for%20Cartesian%20P%E2%88%97(%CE%BA)-LCP%20over%20Symmetric%20Cones&rft.jtitle=Journal%20of%20the%20Operations%20Research%20Society%20of%20China%20(Internet)&rft.au=Sayadi%20Shahraki,%20Marzieh&rft.date=2015-09-01&rft.volume=3&rft.issue=3&rft.spage=331&rft.epage=345&rft.pages=331-345&rft.issn=2194-668X&rft.eissn=2194-6698&rft_id=info:doi/10.1007/s40305-015-0094-y&rft_dat=%3Cproquest%3E2933273661%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933273661&rft_id=info:pmid/&rfr_iscdi=true