Parametric generation of optimal structures through discrete exponential functions: unveiling connections between structural optimality and discrete isothermicity

This study discusses an equilibrium state of structures endowed with integrability and relates the structural optimality for Michell’s classic problem and the isothermicity in discrete differential geometry. This discussion leads to a new approach for the parametric generation of quasi-optimal layou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2024-03, Vol.67 (3), p.41, Article 41
Hauptverfasser: Hayashi, Kazuki, Jikumaru, Yoshiki, Yokosuka, Yohei, Hayakawa, Kentaro, Kajiwara, Kenji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 41
container_title Structural and multidisciplinary optimization
container_volume 67
creator Hayashi, Kazuki
Jikumaru, Yoshiki
Yokosuka, Yohei
Hayakawa, Kentaro
Kajiwara, Kenji
description This study discusses an equilibrium state of structures endowed with integrability and relates the structural optimality for Michell’s classic problem and the isothermicity in discrete differential geometry. This discussion leads to a new approach for the parametric generation of quasi-optimal layouts of bar members. The layout of bar members is determined by taking the diagonals of a quadrilateral mesh constructed from a discrete exponential function. The configuration of the planar layout can be changed by adjusting the parameters of a discrete exponential function. In addition, the inverse stereographic projection allows for obtaining spherical shapes from the planar layouts, and the Möbius transformations enable the generation of eccentric near-optimal shapes. It is also demonstrated that the structural layouts generated in this study are the exact optimal or near-optimal solution to Michell’s optimization problem.
doi_str_mv 10.1007/s00158-024-03767-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933269785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933269785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-d1b81ea46722832ff73512b1dccbd0bbccd79d13520695382369d2f0b71fcc6d3</originalsourceid><addsrcrecordid>eNp9kctOwzAQRSMEEqXwA6wssQ74kcQOO1TxkirBAiR2VmJPWletXWwH6O_wpbgEtTtWM5q5545GN8vOCb4kGPOrgDEpRY5pkWPGK56Tg2xEKlLmpBDicNfzt-PsJIQFxljgoh5l38-Nb1YQvVFoBhZ8E42zyHXIraNZNUsUou9V7D0EFOfe9bM50iYoDxEQfK2dBRtN0nW9VVs2XKPefoBZGjtDylkLwxi1ED8B7M4wMX83TNygxuq9rwkuzsGvjEqr0-yoa5YBzv7qOHu9u32ZPOTTp_vHyc00V6wUMdekFQSaouKUCka7jrOS0JZopVqN21YpzWtNWElxVZdMUFbVmna45aRTqtJsnF0Mvmvv3nsIUS5c7206KWnNGK1qLsqkooNKeReCh06uffrBbyTBcpuFHLKQKQv5m4UkCWIDFJLYzsDvrf-hfgDbUZMa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933269785</pqid></control><display><type>article</type><title>Parametric generation of optimal structures through discrete exponential functions: unveiling connections between structural optimality and discrete isothermicity</title><source>Springer Nature - Complete Springer Journals</source><creator>Hayashi, Kazuki ; Jikumaru, Yoshiki ; Yokosuka, Yohei ; Hayakawa, Kentaro ; Kajiwara, Kenji</creator><creatorcontrib>Hayashi, Kazuki ; Jikumaru, Yoshiki ; Yokosuka, Yohei ; Hayakawa, Kentaro ; Kajiwara, Kenji</creatorcontrib><description>This study discusses an equilibrium state of structures endowed with integrability and relates the structural optimality for Michell’s classic problem and the isothermicity in discrete differential geometry. This discussion leads to a new approach for the parametric generation of quasi-optimal layouts of bar members. The layout of bar members is determined by taking the diagonals of a quadrilateral mesh constructed from a discrete exponential function. The configuration of the planar layout can be changed by adjusting the parameters of a discrete exponential function. In addition, the inverse stereographic projection allows for obtaining spherical shapes from the planar layouts, and the Möbius transformations enable the generation of eccentric near-optimal shapes. It is also demonstrated that the structural layouts generated in this study are the exact optimal or near-optimal solution to Michell’s optimization problem.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-024-03767-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Architectural engineering ; Architecture ; Boundary conditions ; Computational Mathematics and Numerical Analysis ; Differential geometry ; Engineering ; Engineering Design ; Equilibrium ; Exponential functions ; Geometric transformation ; Geometry ; Layouts ; Load ; Mechanical engineering ; Optimization ; Quadrilaterals ; Research Paper ; Theoretical and Applied Mechanics</subject><ispartof>Structural and multidisciplinary optimization, 2024-03, Vol.67 (3), p.41, Article 41</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-d1b81ea46722832ff73512b1dccbd0bbccd79d13520695382369d2f0b71fcc6d3</cites><orcidid>0000-0002-4026-8234</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-024-03767-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-024-03767-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Hayashi, Kazuki</creatorcontrib><creatorcontrib>Jikumaru, Yoshiki</creatorcontrib><creatorcontrib>Yokosuka, Yohei</creatorcontrib><creatorcontrib>Hayakawa, Kentaro</creatorcontrib><creatorcontrib>Kajiwara, Kenji</creatorcontrib><title>Parametric generation of optimal structures through discrete exponential functions: unveiling connections between structural optimality and discrete isothermicity</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>This study discusses an equilibrium state of structures endowed with integrability and relates the structural optimality for Michell’s classic problem and the isothermicity in discrete differential geometry. This discussion leads to a new approach for the parametric generation of quasi-optimal layouts of bar members. The layout of bar members is determined by taking the diagonals of a quadrilateral mesh constructed from a discrete exponential function. The configuration of the planar layout can be changed by adjusting the parameters of a discrete exponential function. In addition, the inverse stereographic projection allows for obtaining spherical shapes from the planar layouts, and the Möbius transformations enable the generation of eccentric near-optimal shapes. It is also demonstrated that the structural layouts generated in this study are the exact optimal or near-optimal solution to Michell’s optimization problem.</description><subject>Architectural engineering</subject><subject>Architecture</subject><subject>Boundary conditions</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Differential geometry</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Equilibrium</subject><subject>Exponential functions</subject><subject>Geometric transformation</subject><subject>Geometry</subject><subject>Layouts</subject><subject>Load</subject><subject>Mechanical engineering</subject><subject>Optimization</subject><subject>Quadrilaterals</subject><subject>Research Paper</subject><subject>Theoretical and Applied Mechanics</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kctOwzAQRSMEEqXwA6wssQ74kcQOO1TxkirBAiR2VmJPWletXWwH6O_wpbgEtTtWM5q5545GN8vOCb4kGPOrgDEpRY5pkWPGK56Tg2xEKlLmpBDicNfzt-PsJIQFxljgoh5l38-Nb1YQvVFoBhZ8E42zyHXIraNZNUsUou9V7D0EFOfe9bM50iYoDxEQfK2dBRtN0nW9VVs2XKPefoBZGjtDylkLwxi1ED8B7M4wMX83TNygxuq9rwkuzsGvjEqr0-yoa5YBzv7qOHu9u32ZPOTTp_vHyc00V6wUMdekFQSaouKUCka7jrOS0JZopVqN21YpzWtNWElxVZdMUFbVmna45aRTqtJsnF0Mvmvv3nsIUS5c7206KWnNGK1qLsqkooNKeReCh06uffrBbyTBcpuFHLKQKQv5m4UkCWIDFJLYzsDvrf-hfgDbUZMa</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Hayashi, Kazuki</creator><creator>Jikumaru, Yoshiki</creator><creator>Yokosuka, Yohei</creator><creator>Hayakawa, Kentaro</creator><creator>Kajiwara, Kenji</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4026-8234</orcidid></search><sort><creationdate>20240301</creationdate><title>Parametric generation of optimal structures through discrete exponential functions: unveiling connections between structural optimality and discrete isothermicity</title><author>Hayashi, Kazuki ; Jikumaru, Yoshiki ; Yokosuka, Yohei ; Hayakawa, Kentaro ; Kajiwara, Kenji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-d1b81ea46722832ff73512b1dccbd0bbccd79d13520695382369d2f0b71fcc6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Architectural engineering</topic><topic>Architecture</topic><topic>Boundary conditions</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Differential geometry</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Equilibrium</topic><topic>Exponential functions</topic><topic>Geometric transformation</topic><topic>Geometry</topic><topic>Layouts</topic><topic>Load</topic><topic>Mechanical engineering</topic><topic>Optimization</topic><topic>Quadrilaterals</topic><topic>Research Paper</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayashi, Kazuki</creatorcontrib><creatorcontrib>Jikumaru, Yoshiki</creatorcontrib><creatorcontrib>Yokosuka, Yohei</creatorcontrib><creatorcontrib>Hayakawa, Kentaro</creatorcontrib><creatorcontrib>Kajiwara, Kenji</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayashi, Kazuki</au><au>Jikumaru, Yoshiki</au><au>Yokosuka, Yohei</au><au>Hayakawa, Kentaro</au><au>Kajiwara, Kenji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric generation of optimal structures through discrete exponential functions: unveiling connections between structural optimality and discrete isothermicity</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>67</volume><issue>3</issue><spage>41</spage><pages>41-</pages><artnum>41</artnum><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>This study discusses an equilibrium state of structures endowed with integrability and relates the structural optimality for Michell’s classic problem and the isothermicity in discrete differential geometry. This discussion leads to a new approach for the parametric generation of quasi-optimal layouts of bar members. The layout of bar members is determined by taking the diagonals of a quadrilateral mesh constructed from a discrete exponential function. The configuration of the planar layout can be changed by adjusting the parameters of a discrete exponential function. In addition, the inverse stereographic projection allows for obtaining spherical shapes from the planar layouts, and the Möbius transformations enable the generation of eccentric near-optimal shapes. It is also demonstrated that the structural layouts generated in this study are the exact optimal or near-optimal solution to Michell’s optimization problem.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-024-03767-1</doi><orcidid>https://orcid.org/0000-0002-4026-8234</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1615-147X
ispartof Structural and multidisciplinary optimization, 2024-03, Vol.67 (3), p.41, Article 41
issn 1615-147X
1615-1488
language eng
recordid cdi_proquest_journals_2933269785
source Springer Nature - Complete Springer Journals
subjects Architectural engineering
Architecture
Boundary conditions
Computational Mathematics and Numerical Analysis
Differential geometry
Engineering
Engineering Design
Equilibrium
Exponential functions
Geometric transformation
Geometry
Layouts
Load
Mechanical engineering
Optimization
Quadrilaterals
Research Paper
Theoretical and Applied Mechanics
title Parametric generation of optimal structures through discrete exponential functions: unveiling connections between structural optimality and discrete isothermicity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A10%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20generation%20of%20optimal%20structures%20through%20discrete%20exponential%20functions:%20unveiling%20connections%20between%20structural%20optimality%20and%20discrete%20isothermicity&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Hayashi,%20Kazuki&rft.date=2024-03-01&rft.volume=67&rft.issue=3&rft.spage=41&rft.pages=41-&rft.artnum=41&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-024-03767-1&rft_dat=%3Cproquest_cross%3E2933269785%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933269785&rft_id=info:pmid/&rfr_iscdi=true