Parametric generation of optimal structures through discrete exponential functions: unveiling connections between structural optimality and discrete isothermicity
This study discusses an equilibrium state of structures endowed with integrability and relates the structural optimality for Michell’s classic problem and the isothermicity in discrete differential geometry. This discussion leads to a new approach for the parametric generation of quasi-optimal layou...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2024-03, Vol.67 (3), p.41, Article 41 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 41 |
container_title | Structural and multidisciplinary optimization |
container_volume | 67 |
creator | Hayashi, Kazuki Jikumaru, Yoshiki Yokosuka, Yohei Hayakawa, Kentaro Kajiwara, Kenji |
description | This study discusses an equilibrium state of structures endowed with integrability and relates the structural optimality for Michell’s classic problem and the isothermicity in discrete differential geometry. This discussion leads to a new approach for the parametric generation of quasi-optimal layouts of bar members. The layout of bar members is determined by taking the diagonals of a quadrilateral mesh constructed from a discrete exponential function. The configuration of the planar layout can be changed by adjusting the parameters of a discrete exponential function. In addition, the inverse stereographic projection allows for obtaining spherical shapes from the planar layouts, and the Möbius transformations enable the generation of eccentric near-optimal shapes. It is also demonstrated that the structural layouts generated in this study are the exact optimal or near-optimal solution to Michell’s optimization problem. |
doi_str_mv | 10.1007/s00158-024-03767-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933269785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933269785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-d1b81ea46722832ff73512b1dccbd0bbccd79d13520695382369d2f0b71fcc6d3</originalsourceid><addsrcrecordid>eNp9kctOwzAQRSMEEqXwA6wssQ74kcQOO1TxkirBAiR2VmJPWletXWwH6O_wpbgEtTtWM5q5545GN8vOCb4kGPOrgDEpRY5pkWPGK56Tg2xEKlLmpBDicNfzt-PsJIQFxljgoh5l38-Nb1YQvVFoBhZ8E42zyHXIraNZNUsUou9V7D0EFOfe9bM50iYoDxEQfK2dBRtN0nW9VVs2XKPefoBZGjtDylkLwxi1ED8B7M4wMX83TNygxuq9rwkuzsGvjEqr0-yoa5YBzv7qOHu9u32ZPOTTp_vHyc00V6wUMdekFQSaouKUCka7jrOS0JZopVqN21YpzWtNWElxVZdMUFbVmna45aRTqtJsnF0Mvmvv3nsIUS5c7206KWnNGK1qLsqkooNKeReCh06uffrBbyTBcpuFHLKQKQv5m4UkCWIDFJLYzsDvrf-hfgDbUZMa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933269785</pqid></control><display><type>article</type><title>Parametric generation of optimal structures through discrete exponential functions: unveiling connections between structural optimality and discrete isothermicity</title><source>Springer Nature - Complete Springer Journals</source><creator>Hayashi, Kazuki ; Jikumaru, Yoshiki ; Yokosuka, Yohei ; Hayakawa, Kentaro ; Kajiwara, Kenji</creator><creatorcontrib>Hayashi, Kazuki ; Jikumaru, Yoshiki ; Yokosuka, Yohei ; Hayakawa, Kentaro ; Kajiwara, Kenji</creatorcontrib><description>This study discusses an equilibrium state of structures endowed with integrability and relates the structural optimality for Michell’s classic problem and the isothermicity in discrete differential geometry. This discussion leads to a new approach for the parametric generation of quasi-optimal layouts of bar members. The layout of bar members is determined by taking the diagonals of a quadrilateral mesh constructed from a discrete exponential function. The configuration of the planar layout can be changed by adjusting the parameters of a discrete exponential function. In addition, the inverse stereographic projection allows for obtaining spherical shapes from the planar layouts, and the Möbius transformations enable the generation of eccentric near-optimal shapes. It is also demonstrated that the structural layouts generated in this study are the exact optimal or near-optimal solution to Michell’s optimization problem.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-024-03767-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Architectural engineering ; Architecture ; Boundary conditions ; Computational Mathematics and Numerical Analysis ; Differential geometry ; Engineering ; Engineering Design ; Equilibrium ; Exponential functions ; Geometric transformation ; Geometry ; Layouts ; Load ; Mechanical engineering ; Optimization ; Quadrilaterals ; Research Paper ; Theoretical and Applied Mechanics</subject><ispartof>Structural and multidisciplinary optimization, 2024-03, Vol.67 (3), p.41, Article 41</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-d1b81ea46722832ff73512b1dccbd0bbccd79d13520695382369d2f0b71fcc6d3</cites><orcidid>0000-0002-4026-8234</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-024-03767-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-024-03767-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Hayashi, Kazuki</creatorcontrib><creatorcontrib>Jikumaru, Yoshiki</creatorcontrib><creatorcontrib>Yokosuka, Yohei</creatorcontrib><creatorcontrib>Hayakawa, Kentaro</creatorcontrib><creatorcontrib>Kajiwara, Kenji</creatorcontrib><title>Parametric generation of optimal structures through discrete exponential functions: unveiling connections between structural optimality and discrete isothermicity</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>This study discusses an equilibrium state of structures endowed with integrability and relates the structural optimality for Michell’s classic problem and the isothermicity in discrete differential geometry. This discussion leads to a new approach for the parametric generation of quasi-optimal layouts of bar members. The layout of bar members is determined by taking the diagonals of a quadrilateral mesh constructed from a discrete exponential function. The configuration of the planar layout can be changed by adjusting the parameters of a discrete exponential function. In addition, the inverse stereographic projection allows for obtaining spherical shapes from the planar layouts, and the Möbius transformations enable the generation of eccentric near-optimal shapes. It is also demonstrated that the structural layouts generated in this study are the exact optimal or near-optimal solution to Michell’s optimization problem.</description><subject>Architectural engineering</subject><subject>Architecture</subject><subject>Boundary conditions</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Differential geometry</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Equilibrium</subject><subject>Exponential functions</subject><subject>Geometric transformation</subject><subject>Geometry</subject><subject>Layouts</subject><subject>Load</subject><subject>Mechanical engineering</subject><subject>Optimization</subject><subject>Quadrilaterals</subject><subject>Research Paper</subject><subject>Theoretical and Applied Mechanics</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kctOwzAQRSMEEqXwA6wssQ74kcQOO1TxkirBAiR2VmJPWletXWwH6O_wpbgEtTtWM5q5545GN8vOCb4kGPOrgDEpRY5pkWPGK56Tg2xEKlLmpBDicNfzt-PsJIQFxljgoh5l38-Nb1YQvVFoBhZ8E42zyHXIraNZNUsUou9V7D0EFOfe9bM50iYoDxEQfK2dBRtN0nW9VVs2XKPefoBZGjtDylkLwxi1ED8B7M4wMX83TNygxuq9rwkuzsGvjEqr0-yoa5YBzv7qOHu9u32ZPOTTp_vHyc00V6wUMdekFQSaouKUCka7jrOS0JZopVqN21YpzWtNWElxVZdMUFbVmna45aRTqtJsnF0Mvmvv3nsIUS5c7206KWnNGK1qLsqkooNKeReCh06uffrBbyTBcpuFHLKQKQv5m4UkCWIDFJLYzsDvrf-hfgDbUZMa</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Hayashi, Kazuki</creator><creator>Jikumaru, Yoshiki</creator><creator>Yokosuka, Yohei</creator><creator>Hayakawa, Kentaro</creator><creator>Kajiwara, Kenji</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4026-8234</orcidid></search><sort><creationdate>20240301</creationdate><title>Parametric generation of optimal structures through discrete exponential functions: unveiling connections between structural optimality and discrete isothermicity</title><author>Hayashi, Kazuki ; Jikumaru, Yoshiki ; Yokosuka, Yohei ; Hayakawa, Kentaro ; Kajiwara, Kenji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-d1b81ea46722832ff73512b1dccbd0bbccd79d13520695382369d2f0b71fcc6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Architectural engineering</topic><topic>Architecture</topic><topic>Boundary conditions</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Differential geometry</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Equilibrium</topic><topic>Exponential functions</topic><topic>Geometric transformation</topic><topic>Geometry</topic><topic>Layouts</topic><topic>Load</topic><topic>Mechanical engineering</topic><topic>Optimization</topic><topic>Quadrilaterals</topic><topic>Research Paper</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayashi, Kazuki</creatorcontrib><creatorcontrib>Jikumaru, Yoshiki</creatorcontrib><creatorcontrib>Yokosuka, Yohei</creatorcontrib><creatorcontrib>Hayakawa, Kentaro</creatorcontrib><creatorcontrib>Kajiwara, Kenji</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayashi, Kazuki</au><au>Jikumaru, Yoshiki</au><au>Yokosuka, Yohei</au><au>Hayakawa, Kentaro</au><au>Kajiwara, Kenji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric generation of optimal structures through discrete exponential functions: unveiling connections between structural optimality and discrete isothermicity</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>67</volume><issue>3</issue><spage>41</spage><pages>41-</pages><artnum>41</artnum><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>This study discusses an equilibrium state of structures endowed with integrability and relates the structural optimality for Michell’s classic problem and the isothermicity in discrete differential geometry. This discussion leads to a new approach for the parametric generation of quasi-optimal layouts of bar members. The layout of bar members is determined by taking the diagonals of a quadrilateral mesh constructed from a discrete exponential function. The configuration of the planar layout can be changed by adjusting the parameters of a discrete exponential function. In addition, the inverse stereographic projection allows for obtaining spherical shapes from the planar layouts, and the Möbius transformations enable the generation of eccentric near-optimal shapes. It is also demonstrated that the structural layouts generated in this study are the exact optimal or near-optimal solution to Michell’s optimization problem.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-024-03767-1</doi><orcidid>https://orcid.org/0000-0002-4026-8234</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-147X |
ispartof | Structural and multidisciplinary optimization, 2024-03, Vol.67 (3), p.41, Article 41 |
issn | 1615-147X 1615-1488 |
language | eng |
recordid | cdi_proquest_journals_2933269785 |
source | Springer Nature - Complete Springer Journals |
subjects | Architectural engineering Architecture Boundary conditions Computational Mathematics and Numerical Analysis Differential geometry Engineering Engineering Design Equilibrium Exponential functions Geometric transformation Geometry Layouts Load Mechanical engineering Optimization Quadrilaterals Research Paper Theoretical and Applied Mechanics |
title | Parametric generation of optimal structures through discrete exponential functions: unveiling connections between structural optimality and discrete isothermicity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A10%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20generation%20of%20optimal%20structures%20through%20discrete%20exponential%20functions:%20unveiling%20connections%20between%20structural%20optimality%20and%20discrete%20isothermicity&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Hayashi,%20Kazuki&rft.date=2024-03-01&rft.volume=67&rft.issue=3&rft.spage=41&rft.pages=41-&rft.artnum=41&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-024-03767-1&rft_dat=%3Cproquest_cross%3E2933269785%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933269785&rft_id=info:pmid/&rfr_iscdi=true |