A Fast Fourier Finite Element Approach for 3D CSEM Modeling Using Different Fourier Transform Methods
A novel Fourier finite element algorithm for 3D controlled-source electromagnetic (CSEM) problems using different 2D Fourier transform methods is presented. As an important and effective tool, the 2D Fourier transform method simplifies the 3D CSEM problem into multiple 1D problems solved by 1D finit...
Gespeichert in:
Veröffentlicht in: | Pure and applied geophysics 2024-02, Vol.181 (2), p.451-466 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 466 |
---|---|
container_issue | 2 |
container_start_page | 451 |
container_title | Pure and applied geophysics |
container_volume | 181 |
creator | Zhao, DongDong Zhang, QianJiang Wang, XuLong Mo, TaiPing Chen, ZhenCheng |
description | A novel Fourier finite element algorithm for 3D controlled-source electromagnetic (CSEM) problems using different 2D Fourier transform methods is presented. As an important and effective tool, the 2D Fourier transform method simplifies the 3D CSEM problem into multiple 1D problems solved by 1D finite element method, which can be used to significantly accelerate the 3D frequency-domain electromagnetic (EM) forward modeling algorithms. For this proposed Fourier finite element method, two different transformation techniques, including a standard FFT algorithm with different grid expansion coefficient, and a Gauss-FFT algorithm with different Gaussian quadrature nodes, are investigated and compared in terms of balancing modeling accuracy and efficiency. All the different Fourier transform algorithms are numerically checked by integral equation (IE) reference solutions. The comparison results of numerical tests show that the present 3D CSEM modeling method with standard FFT or Gauss-FFT not only can guarantee the accuracy, but can also reduce the computing cost for any EM problem in general. Additionally, the standard FFT algorithm has high simulation efficiency and relatively low accuracy, while the Gauss-FFT algorithm has high simulation accuracy and relatively low efficiency. Because of its faster numerical solution, we infer that the standard FFT with grid expansion is more applicable for solving large-scale CSEM forward problems. |
doi_str_mv | 10.1007/s00024-023-03373-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933266618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933266618</sourcerecordid><originalsourceid>FETCH-LOGICAL-a293t-1b0a7e2ce8f82a839ac2bcc605f17c28a68c14044827734215790b2022be2a493</originalsourceid><addsrcrecordid>eNp9UM9PwjAUbowmIvoPeGriefr62q3bkQBTE4gH4dx05Q1GYMN2HPzvLaLx5uV7ycv3Kx9j9wIeBYB-CgCAKgGUCUipI16wgVAISSFkdskGEN-JSlN5zW5C2AIIrdNiwGjESxt6XnZH35DnZdM2PfHpjvbU9nx0OPjOug2vO8_lhI_fp3M-71a0a9o1X4YTTpq6Jn9i_5osvG1DVOz5nPpNtwq37Kq2u0B3P3fIluV0MX5JZm_Pr-PRLLFYyD4RFVhN6Civc7S5LKzDyrkM0lpoh7nNcicUKJWj1lKhSHUBFQJiRWhVIYfs4ewbW38cKfRmGyu1MdLEAIlZlok8svDMcr4LwVNtDr7ZW_9pBJjTnOY8p4lzmu85Iw6ZPItCJLdr8n_W_6i-AH_-ddg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933266618</pqid></control><display><type>article</type><title>A Fast Fourier Finite Element Approach for 3D CSEM Modeling Using Different Fourier Transform Methods</title><source>SpringerLink (Online service)</source><creator>Zhao, DongDong ; Zhang, QianJiang ; Wang, XuLong ; Mo, TaiPing ; Chen, ZhenCheng</creator><creatorcontrib>Zhao, DongDong ; Zhang, QianJiang ; Wang, XuLong ; Mo, TaiPing ; Chen, ZhenCheng</creatorcontrib><description>A novel Fourier finite element algorithm for 3D controlled-source electromagnetic (CSEM) problems using different 2D Fourier transform methods is presented. As an important and effective tool, the 2D Fourier transform method simplifies the 3D CSEM problem into multiple 1D problems solved by 1D finite element method, which can be used to significantly accelerate the 3D frequency-domain electromagnetic (EM) forward modeling algorithms. For this proposed Fourier finite element method, two different transformation techniques, including a standard FFT algorithm with different grid expansion coefficient, and a Gauss-FFT algorithm with different Gaussian quadrature nodes, are investigated and compared in terms of balancing modeling accuracy and efficiency. All the different Fourier transform algorithms are numerically checked by integral equation (IE) reference solutions. The comparison results of numerical tests show that the present 3D CSEM modeling method with standard FFT or Gauss-FFT not only can guarantee the accuracy, but can also reduce the computing cost for any EM problem in general. Additionally, the standard FFT algorithm has high simulation efficiency and relatively low accuracy, while the Gauss-FFT algorithm has high simulation accuracy and relatively low efficiency. Because of its faster numerical solution, we infer that the standard FFT with grid expansion is more applicable for solving large-scale CSEM forward problems.</description><identifier>ISSN: 0033-4553</identifier><identifier>EISSN: 1420-9136</identifier><identifier>DOI: 10.1007/s00024-023-03373-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Accuracy ; Algorithms ; Computer simulation ; Earth and Environmental Science ; Earth Sciences ; Efficiency ; Finite element analysis ; Finite element method ; Fourier transforms ; Geophysics/Geodesy ; Integral equations ; Mathematical models ; Model accuracy ; Modelling ; Quadratures ; Thermal expansion ; Three dimensional models</subject><ispartof>Pure and applied geophysics, 2024-02, Vol.181 (2), p.451-466</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a293t-1b0a7e2ce8f82a839ac2bcc605f17c28a68c14044827734215790b2022be2a493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00024-023-03373-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00024-023-03373-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Zhao, DongDong</creatorcontrib><creatorcontrib>Zhang, QianJiang</creatorcontrib><creatorcontrib>Wang, XuLong</creatorcontrib><creatorcontrib>Mo, TaiPing</creatorcontrib><creatorcontrib>Chen, ZhenCheng</creatorcontrib><title>A Fast Fourier Finite Element Approach for 3D CSEM Modeling Using Different Fourier Transform Methods</title><title>Pure and applied geophysics</title><addtitle>Pure Appl. Geophys</addtitle><description>A novel Fourier finite element algorithm for 3D controlled-source electromagnetic (CSEM) problems using different 2D Fourier transform methods is presented. As an important and effective tool, the 2D Fourier transform method simplifies the 3D CSEM problem into multiple 1D problems solved by 1D finite element method, which can be used to significantly accelerate the 3D frequency-domain electromagnetic (EM) forward modeling algorithms. For this proposed Fourier finite element method, two different transformation techniques, including a standard FFT algorithm with different grid expansion coefficient, and a Gauss-FFT algorithm with different Gaussian quadrature nodes, are investigated and compared in terms of balancing modeling accuracy and efficiency. All the different Fourier transform algorithms are numerically checked by integral equation (IE) reference solutions. The comparison results of numerical tests show that the present 3D CSEM modeling method with standard FFT or Gauss-FFT not only can guarantee the accuracy, but can also reduce the computing cost for any EM problem in general. Additionally, the standard FFT algorithm has high simulation efficiency and relatively low accuracy, while the Gauss-FFT algorithm has high simulation accuracy and relatively low efficiency. Because of its faster numerical solution, we infer that the standard FFT with grid expansion is more applicable for solving large-scale CSEM forward problems.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Efficiency</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fourier transforms</subject><subject>Geophysics/Geodesy</subject><subject>Integral equations</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Modelling</subject><subject>Quadratures</subject><subject>Thermal expansion</subject><subject>Three dimensional models</subject><issn>0033-4553</issn><issn>1420-9136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UM9PwjAUbowmIvoPeGriefr62q3bkQBTE4gH4dx05Q1GYMN2HPzvLaLx5uV7ycv3Kx9j9wIeBYB-CgCAKgGUCUipI16wgVAISSFkdskGEN-JSlN5zW5C2AIIrdNiwGjESxt6XnZH35DnZdM2PfHpjvbU9nx0OPjOug2vO8_lhI_fp3M-71a0a9o1X4YTTpq6Jn9i_5osvG1DVOz5nPpNtwq37Kq2u0B3P3fIluV0MX5JZm_Pr-PRLLFYyD4RFVhN6Civc7S5LKzDyrkM0lpoh7nNcicUKJWj1lKhSHUBFQJiRWhVIYfs4ewbW38cKfRmGyu1MdLEAIlZlok8svDMcr4LwVNtDr7ZW_9pBJjTnOY8p4lzmu85Iw6ZPItCJLdr8n_W_6i-AH_-ddg</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Zhao, DongDong</creator><creator>Zhang, QianJiang</creator><creator>Wang, XuLong</creator><creator>Mo, TaiPing</creator><creator>Chen, ZhenCheng</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20240201</creationdate><title>A Fast Fourier Finite Element Approach for 3D CSEM Modeling Using Different Fourier Transform Methods</title><author>Zhao, DongDong ; Zhang, QianJiang ; Wang, XuLong ; Mo, TaiPing ; Chen, ZhenCheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a293t-1b0a7e2ce8f82a839ac2bcc605f17c28a68c14044827734215790b2022be2a493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Efficiency</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fourier transforms</topic><topic>Geophysics/Geodesy</topic><topic>Integral equations</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Modelling</topic><topic>Quadratures</topic><topic>Thermal expansion</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, DongDong</creatorcontrib><creatorcontrib>Zhang, QianJiang</creatorcontrib><creatorcontrib>Wang, XuLong</creatorcontrib><creatorcontrib>Mo, TaiPing</creatorcontrib><creatorcontrib>Chen, ZhenCheng</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Pure and applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, DongDong</au><au>Zhang, QianJiang</au><au>Wang, XuLong</au><au>Mo, TaiPing</au><au>Chen, ZhenCheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fast Fourier Finite Element Approach for 3D CSEM Modeling Using Different Fourier Transform Methods</atitle><jtitle>Pure and applied geophysics</jtitle><stitle>Pure Appl. Geophys</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>181</volume><issue>2</issue><spage>451</spage><epage>466</epage><pages>451-466</pages><issn>0033-4553</issn><eissn>1420-9136</eissn><abstract>A novel Fourier finite element algorithm for 3D controlled-source electromagnetic (CSEM) problems using different 2D Fourier transform methods is presented. As an important and effective tool, the 2D Fourier transform method simplifies the 3D CSEM problem into multiple 1D problems solved by 1D finite element method, which can be used to significantly accelerate the 3D frequency-domain electromagnetic (EM) forward modeling algorithms. For this proposed Fourier finite element method, two different transformation techniques, including a standard FFT algorithm with different grid expansion coefficient, and a Gauss-FFT algorithm with different Gaussian quadrature nodes, are investigated and compared in terms of balancing modeling accuracy and efficiency. All the different Fourier transform algorithms are numerically checked by integral equation (IE) reference solutions. The comparison results of numerical tests show that the present 3D CSEM modeling method with standard FFT or Gauss-FFT not only can guarantee the accuracy, but can also reduce the computing cost for any EM problem in general. Additionally, the standard FFT algorithm has high simulation efficiency and relatively low accuracy, while the Gauss-FFT algorithm has high simulation accuracy and relatively low efficiency. Because of its faster numerical solution, we infer that the standard FFT with grid expansion is more applicable for solving large-scale CSEM forward problems.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00024-023-03373-0</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-4553 |
ispartof | Pure and applied geophysics, 2024-02, Vol.181 (2), p.451-466 |
issn | 0033-4553 1420-9136 |
language | eng |
recordid | cdi_proquest_journals_2933266618 |
source | SpringerLink (Online service) |
subjects | Accuracy Algorithms Computer simulation Earth and Environmental Science Earth Sciences Efficiency Finite element analysis Finite element method Fourier transforms Geophysics/Geodesy Integral equations Mathematical models Model accuracy Modelling Quadratures Thermal expansion Three dimensional models |
title | A Fast Fourier Finite Element Approach for 3D CSEM Modeling Using Different Fourier Transform Methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fast%20Fourier%20Finite%20Element%20Approach%20for%203D%20CSEM%20Modeling%20Using%20Different%20Fourier%20Transform%20Methods&rft.jtitle=Pure%20and%20applied%20geophysics&rft.au=Zhao,%20DongDong&rft.date=2024-02-01&rft.volume=181&rft.issue=2&rft.spage=451&rft.epage=466&rft.pages=451-466&rft.issn=0033-4553&rft.eissn=1420-9136&rft_id=info:doi/10.1007/s00024-023-03373-0&rft_dat=%3Cproquest_cross%3E2933266618%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933266618&rft_id=info:pmid/&rfr_iscdi=true |