Multiobjective H2/H∞ Control Design for Nonlinear Stochastic Chaotic Systems via a Front-Squeezing LMIs-Constrained MOEA

This study proposes the multiobjective H 2 / H ∞ fuzzy control design for a nonlinear stochastic chaotic system via concurrently optimizing H 2 and H ∞ performance indices in a Pareto optimal sense. Using the Takagi–Sugeno fuzzy model to approximate the nonlinear stochastic chaotic system, the multi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fuzzy systems 2021-11, Vol.23 (8), p.2371-2383
Hauptverfasser: Wu, Chien-Feng, Hsu, Chun-Fei, Hwang, Chi-Kuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study proposes the multiobjective H 2 / H ∞ fuzzy control design for a nonlinear stochastic chaotic system via concurrently optimizing H 2 and H ∞ performance indices in a Pareto optimal sense. Using the Takagi–Sugeno fuzzy model to approximate the nonlinear stochastic chaotic system, the multiobjective H 2 / H ∞ fuzzy control design problem can be transformed into a linear matrix inequalities (LMIs)-constrained multiobjective optimization problem (an LMIs-constrained MOP). By the help of the LMIs-constrained multiobjective evolution algorithm (LMIs-constrained MOEA), one can obtain the Pareto optimal controller. However, the existing LMIs-constrained MOEA usually couples with a heavy computational load. This study proposes the front-squeezing LMIs-constrained MOEA to resolve such a computational cost problem. Finally, a simulation example is presented to verify the effectiveness of the proposed theories.
ISSN:1562-2479
2199-3211
DOI:10.1007/s40815-021-01149-z