Multiobjective H2/H∞ Control Design for Nonlinear Stochastic Chaotic Systems via a Front-Squeezing LMIs-Constrained MOEA
This study proposes the multiobjective H 2 / H ∞ fuzzy control design for a nonlinear stochastic chaotic system via concurrently optimizing H 2 and H ∞ performance indices in a Pareto optimal sense. Using the Takagi–Sugeno fuzzy model to approximate the nonlinear stochastic chaotic system, the multi...
Gespeichert in:
Veröffentlicht in: | International journal of fuzzy systems 2021-11, Vol.23 (8), p.2371-2383 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study proposes the multiobjective
H
2
/
H
∞
fuzzy control design for a nonlinear stochastic chaotic system via concurrently optimizing
H
2
and
H
∞
performance indices in a Pareto optimal sense. Using the Takagi–Sugeno fuzzy model to approximate the nonlinear stochastic chaotic system, the multiobjective
H
2
/
H
∞
fuzzy control design problem can be transformed into a linear matrix inequalities (LMIs)-constrained multiobjective optimization problem (an LMIs-constrained MOP). By the help of the LMIs-constrained multiobjective evolution algorithm (LMIs-constrained MOEA), one can obtain the Pareto optimal controller. However, the existing LMIs-constrained MOEA usually couples with a heavy computational load. This study proposes the front-squeezing LMIs-constrained MOEA to resolve such a computational cost problem. Finally, a simulation example is presented to verify the effectiveness of the proposed theories. |
---|---|
ISSN: | 1562-2479 2199-3211 |
DOI: | 10.1007/s40815-021-01149-z |