Micro-YOLO+: Searching Optimal Methods for Compressing Object Detection Model Based on Speed, Size, Cost, and Accuracy
Convolutional neural networks play a great role in solving the problem of object detection. However, conventional object detection models, such as YOLO and SSD, are usually too large to be deployed on embedded devices due to their restricted resources and low power requirements. In this paper, sever...
Gespeichert in:
Veröffentlicht in: | SN computer science 2022-09, Vol.3 (5), p.391, Article 391 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 391 |
container_title | SN computer science |
container_volume | 3 |
creator | Hu, Lining Zhang, Yuhang Zhao, Yang Wu, Tong Li, Yongfu |
description | Convolutional neural networks play a great role in solving the problem of object detection. However, conventional object detection models, such as YOLO and SSD, are usually too large to be deployed on embedded devices due to their restricted resources and low power requirements. In this paper, several efficient methods are explored to balance model size, network accuracy, and inference speed. We explore elective lightweight convolutional layers to supplant the convolutional layers (Conv) in the YOLOv3-tiny network, including the depth-wise separable convolution (DSConv), the mobile inverted bottleneck convolution with squeeze and excitation block (MBConv) and the ghost module (GConv). Moreover, we explore the optimal hyper-parameters of the network and use the improved NMS algorithm, Cluster-NMS. Moreover, a new object detection model, Micro-YOLO+, which achieves a signification reduction in the number of parameters and computation cost while maintaining the performance is proposed. Our Micro-YOLO+ network reduces the number of parameters by 3.18
×
and multiply-accumulate operation (MAC) by 2.44
×
while increases the mAP evaluated on the COCO2014 dataset by 1.6%, compared to the original YOLOv3-tiny network. |
doi_str_mv | 10.1007/s42979-022-01299-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933168285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933168285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1853-354f02153d6af2ce6dfc45200c4723e37e5fa1d9777ad1a84d223ad9f6d223ac3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpD7CyxJIa_EjimB2Up9Qqi8KClWXsSZuqTYKdIpWvxzRIsGI1M5q592oOQqeMXjBK5WVIuJKKUM4JZVwpIg7QgGcZI7mi8vBPf4xGIawopTylSZKlA_Qxq6xvyGsxLc6v8ByMt8uqXuCi7aqNWeMZdMvGBVw2Hk-aTeshhP3-bQW2w7fQxVI1NZ41Dtb4xgRwOI7zFsCN8bz6hHEUhm6MTe3wtbVbb-zuBB2VZh1g9FOH6OX-7nnySKbFw9Pkekosy1NBRJqUlLNUuMyU3ELmSpuknFKbSC5ASEhLw5ySUhrHTJ44zoVxqsz2jRVDdNb7tr5530Lo9KrZ-jpGaq6EYFnOY84Q8f4qogjBQ6lbH7_3O82o_kase8Q6ItZ7xFpEkehFIR7XC_C_1v-ovgAtv30z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933168285</pqid></control><display><type>article</type><title>Micro-YOLO+: Searching Optimal Methods for Compressing Object Detection Model Based on Speed, Size, Cost, and Accuracy</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Hu, Lining ; Zhang, Yuhang ; Zhao, Yang ; Wu, Tong ; Li, Yongfu</creator><creatorcontrib>Hu, Lining ; Zhang, Yuhang ; Zhao, Yang ; Wu, Tong ; Li, Yongfu</creatorcontrib><description>Convolutional neural networks play a great role in solving the problem of object detection. However, conventional object detection models, such as YOLO and SSD, are usually too large to be deployed on embedded devices due to their restricted resources and low power requirements. In this paper, several efficient methods are explored to balance model size, network accuracy, and inference speed. We explore elective lightweight convolutional layers to supplant the convolutional layers (Conv) in the YOLOv3-tiny network, including the depth-wise separable convolution (DSConv), the mobile inverted bottleneck convolution with squeeze and excitation block (MBConv) and the ghost module (GConv). Moreover, we explore the optimal hyper-parameters of the network and use the improved NMS algorithm, Cluster-NMS. Moreover, a new object detection model, Micro-YOLO+, which achieves a signification reduction in the number of parameters and computation cost while maintaining the performance is proposed. Our Micro-YOLO+ network reduces the number of parameters by 3.18
×
and multiply-accumulate operation (MAC) by 2.44
×
while increases the mAP evaluated on the COCO2014 dataset by 1.6%, compared to the original YOLOv3-tiny network.</description><identifier>ISSN: 2661-8907</identifier><identifier>ISSN: 2662-995X</identifier><identifier>EISSN: 2661-8907</identifier><identifier>DOI: 10.1007/s42979-022-01299-3</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Accuracy ; Agents and Artificial Intelligence ; Algorithms ; Artificial neural networks ; Computer Imaging ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Information Theory ; Datasets ; Information Systems and Communication Service ; Mathematical models ; Model accuracy ; Object recognition ; Original Research ; Parameters ; Pattern Recognition and Graphics ; Software Engineering/Programming and Operating Systems ; Telematics ; Vision</subject><ispartof>SN computer science, 2022-09, Vol.3 (5), p.391, Article 391</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1853-354f02153d6af2ce6dfc45200c4723e37e5fa1d9777ad1a84d223ad9f6d223ac3</cites><orcidid>0000-0002-6322-8614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42979-022-01299-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2933168285?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72341</link.rule.ids></links><search><creatorcontrib>Hu, Lining</creatorcontrib><creatorcontrib>Zhang, Yuhang</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Wu, Tong</creatorcontrib><creatorcontrib>Li, Yongfu</creatorcontrib><title>Micro-YOLO+: Searching Optimal Methods for Compressing Object Detection Model Based on Speed, Size, Cost, and Accuracy</title><title>SN computer science</title><addtitle>SN COMPUT. SCI</addtitle><description>Convolutional neural networks play a great role in solving the problem of object detection. However, conventional object detection models, such as YOLO and SSD, are usually too large to be deployed on embedded devices due to their restricted resources and low power requirements. In this paper, several efficient methods are explored to balance model size, network accuracy, and inference speed. We explore elective lightweight convolutional layers to supplant the convolutional layers (Conv) in the YOLOv3-tiny network, including the depth-wise separable convolution (DSConv), the mobile inverted bottleneck convolution with squeeze and excitation block (MBConv) and the ghost module (GConv). Moreover, we explore the optimal hyper-parameters of the network and use the improved NMS algorithm, Cluster-NMS. Moreover, a new object detection model, Micro-YOLO+, which achieves a signification reduction in the number of parameters and computation cost while maintaining the performance is proposed. Our Micro-YOLO+ network reduces the number of parameters by 3.18
×
and multiply-accumulate operation (MAC) by 2.44
×
while increases the mAP evaluated on the COCO2014 dataset by 1.6%, compared to the original YOLOv3-tiny network.</description><subject>Accuracy</subject><subject>Agents and Artificial Intelligence</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Information Systems and Communication Service</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Object recognition</subject><subject>Original Research</subject><subject>Parameters</subject><subject>Pattern Recognition and Graphics</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Telematics</subject><subject>Vision</subject><issn>2661-8907</issn><issn>2662-995X</issn><issn>2661-8907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOwzAQRS0EElXpD7CyxJIa_EjimB2Up9Qqi8KClWXsSZuqTYKdIpWvxzRIsGI1M5q592oOQqeMXjBK5WVIuJKKUM4JZVwpIg7QgGcZI7mi8vBPf4xGIawopTylSZKlA_Qxq6xvyGsxLc6v8ByMt8uqXuCi7aqNWeMZdMvGBVw2Hk-aTeshhP3-bQW2w7fQxVI1NZ41Dtb4xgRwOI7zFsCN8bz6hHEUhm6MTe3wtbVbb-zuBB2VZh1g9FOH6OX-7nnySKbFw9Pkekosy1NBRJqUlLNUuMyU3ELmSpuknFKbSC5ASEhLw5ySUhrHTJ44zoVxqsz2jRVDdNb7tr5530Lo9KrZ-jpGaq6EYFnOY84Q8f4qogjBQ6lbH7_3O82o_kase8Q6ItZ7xFpEkehFIR7XC_C_1v-ovgAtv30z</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Hu, Lining</creator><creator>Zhang, Yuhang</creator><creator>Zhao, Yang</creator><creator>Wu, Tong</creator><creator>Li, Yongfu</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-6322-8614</orcidid></search><sort><creationdate>20220901</creationdate><title>Micro-YOLO+: Searching Optimal Methods for Compressing Object Detection Model Based on Speed, Size, Cost, and Accuracy</title><author>Hu, Lining ; Zhang, Yuhang ; Zhao, Yang ; Wu, Tong ; Li, Yongfu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1853-354f02153d6af2ce6dfc45200c4723e37e5fa1d9777ad1a84d223ad9f6d223ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Agents and Artificial Intelligence</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Information Systems and Communication Service</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Object recognition</topic><topic>Original Research</topic><topic>Parameters</topic><topic>Pattern Recognition and Graphics</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Telematics</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Lining</creatorcontrib><creatorcontrib>Zhang, Yuhang</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Wu, Tong</creatorcontrib><creatorcontrib>Li, Yongfu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SN computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Lining</au><au>Zhang, Yuhang</au><au>Zhao, Yang</au><au>Wu, Tong</au><au>Li, Yongfu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micro-YOLO+: Searching Optimal Methods for Compressing Object Detection Model Based on Speed, Size, Cost, and Accuracy</atitle><jtitle>SN computer science</jtitle><stitle>SN COMPUT. SCI</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>3</volume><issue>5</issue><spage>391</spage><pages>391-</pages><artnum>391</artnum><issn>2661-8907</issn><issn>2662-995X</issn><eissn>2661-8907</eissn><abstract>Convolutional neural networks play a great role in solving the problem of object detection. However, conventional object detection models, such as YOLO and SSD, are usually too large to be deployed on embedded devices due to their restricted resources and low power requirements. In this paper, several efficient methods are explored to balance model size, network accuracy, and inference speed. We explore elective lightweight convolutional layers to supplant the convolutional layers (Conv) in the YOLOv3-tiny network, including the depth-wise separable convolution (DSConv), the mobile inverted bottleneck convolution with squeeze and excitation block (MBConv) and the ghost module (GConv). Moreover, we explore the optimal hyper-parameters of the network and use the improved NMS algorithm, Cluster-NMS. Moreover, a new object detection model, Micro-YOLO+, which achieves a signification reduction in the number of parameters and computation cost while maintaining the performance is proposed. Our Micro-YOLO+ network reduces the number of parameters by 3.18
×
and multiply-accumulate operation (MAC) by 2.44
×
while increases the mAP evaluated on the COCO2014 dataset by 1.6%, compared to the original YOLOv3-tiny network.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42979-022-01299-3</doi><orcidid>https://orcid.org/0000-0002-6322-8614</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2661-8907 |
ispartof | SN computer science, 2022-09, Vol.3 (5), p.391, Article 391 |
issn | 2661-8907 2662-995X 2661-8907 |
language | eng |
recordid | cdi_proquest_journals_2933168285 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Accuracy Agents and Artificial Intelligence Algorithms Artificial neural networks Computer Imaging Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Datasets Information Systems and Communication Service Mathematical models Model accuracy Object recognition Original Research Parameters Pattern Recognition and Graphics Software Engineering/Programming and Operating Systems Telematics Vision |
title | Micro-YOLO+: Searching Optimal Methods for Compressing Object Detection Model Based on Speed, Size, Cost, and Accuracy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A00%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micro-YOLO+:%20Searching%20Optimal%20Methods%20for%20Compressing%20Object%20Detection%20Model%20Based%20on%20Speed,%20Size,%20Cost,%20and%20Accuracy&rft.jtitle=SN%20computer%20science&rft.au=Hu,%20Lining&rft.date=2022-09-01&rft.volume=3&rft.issue=5&rft.spage=391&rft.pages=391-&rft.artnum=391&rft.issn=2661-8907&rft.eissn=2661-8907&rft_id=info:doi/10.1007/s42979-022-01299-3&rft_dat=%3Cproquest_cross%3E2933168285%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933168285&rft_id=info:pmid/&rfr_iscdi=true |