Non-linear Stability of the Kerr–Newman–de Sitter Family of Charged Black Holes

We prove the global non-linear stability, without symmetry assumptions, of slowly rotating charged black holes in de Sitter spacetimes in the context of the initial value problem for the Einstein–Maxwell equations: if one perturbs the initial data of a slowly rotating Kerr–Newman–de Sitter (KNdS) bl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of PDE 2018-06, Vol.4 (1), p.11, Article 11
1. Verfasser: Hintz, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 11
container_title Annals of PDE
container_volume 4
creator Hintz, Peter
description We prove the global non-linear stability, without symmetry assumptions, of slowly rotating charged black holes in de Sitter spacetimes in the context of the initial value problem for the Einstein–Maxwell equations: if one perturbs the initial data of a slowly rotating Kerr–Newman–de Sitter (KNdS) black hole, then in a neighborhood of the exterior region of the black hole, the metric and the electromagnetic field decay exponentially fast to their values for a possibly different member of the KNdS family. This is a continuation of recent work of the author with Vasy on the stability of the Kerr–de Sitter family for the Einstein vacuum equations. Our non-linear iteration scheme automatically finds the final black hole parameters as well as the gauge in which the global solution exists; we work in a generalized wave coordinate/Lorenz gauge, with gauge source functions lying in a suitable finite-dimensional space. We include a self-contained proof of the linear mode stability of Reissner–Nordström–de Sitter black holes, building on work by Kodama–Ishibashi. In the course of our non-linear stability argument, we also obtain the first proof of the linear (mode) stability of slowly rotating KNdS black holes using robust perturbative techniques.
doi_str_mv 10.1007/s40818-018-0047-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933045300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933045300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c231y-7b01f0a029274a19435b7c210a70fd6b7d4690850551b0399495d861f82c2e813</originalsourceid><addsrcrecordid>eNp1kE1OwzAUhC0EEhX0AOwssTY8_8XxEipKEVVZFNaWkzhtSpoUOxXKjjtwQ06CS5BYsRi9WXwzTxqELihcUQB1HQSkNCVwEAhF-iM0YlRrwqRKjqOXTBDJqTpF4xA2AMCoEBKSEVou2obUVeOsx8vOZlVddT1uS9ytHX503n99fC7c-9Y20RQOL6uucx5P7baqf7jJ2vqVK_BtbfNXPGtrF87RSWnr4Ma_9wy9TO-eJzMyf7p_mNzMSc447YnKgJZggWmmhKVacJmpnFGwCsoiyVQhEg2pBClpBlxroWWRJrRMWc5cSvkZuhx6d75927vQmU279018aZjmHITkAJGiA5X7NgTvSrPz1db63lAwh_nMMJ-Bg-J8po8ZNmRCZJuV83_N_4e-AaSecfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933045300</pqid></control><display><type>article</type><title>Non-linear Stability of the Kerr–Newman–de Sitter Family of Charged Black Holes</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Hintz, Peter</creator><creatorcontrib>Hintz, Peter</creatorcontrib><description>We prove the global non-linear stability, without symmetry assumptions, of slowly rotating charged black holes in de Sitter spacetimes in the context of the initial value problem for the Einstein–Maxwell equations: if one perturbs the initial data of a slowly rotating Kerr–Newman–de Sitter (KNdS) black hole, then in a neighborhood of the exterior region of the black hole, the metric and the electromagnetic field decay exponentially fast to their values for a possibly different member of the KNdS family. This is a continuation of recent work of the author with Vasy on the stability of the Kerr–de Sitter family for the Einstein vacuum equations. Our non-linear iteration scheme automatically finds the final black hole parameters as well as the gauge in which the global solution exists; we work in a generalized wave coordinate/Lorenz gauge, with gauge source functions lying in a suitable finite-dimensional space. We include a self-contained proof of the linear mode stability of Reissner–Nordström–de Sitter black holes, building on work by Kodama–Ishibashi. In the course of our non-linear stability argument, we also obtain the first proof of the linear (mode) stability of slowly rotating KNdS black holes using robust perturbative techniques.</description><identifier>ISSN: 2524-5317</identifier><identifier>EISSN: 2199-2576</identifier><identifier>DOI: 10.1007/s40818-018-0047-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Black holes ; Boundary value problems ; Electromagnetic fields ; Electromagnetism ; Gauges ; Mathematical analysis ; Mathematical Methods in Physics ; Maxwell's equations ; Neighborhoods ; Partial Differential Equations ; Physics ; Physics and Astronomy ; Rotation ; Spacetime ; Stability</subject><ispartof>Annals of PDE, 2018-06, Vol.4 (1), p.11, Article 11</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>Springer International Publishing AG, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c231y-7b01f0a029274a19435b7c210a70fd6b7d4690850551b0399495d861f82c2e813</citedby><cites>FETCH-LOGICAL-c231y-7b01f0a029274a19435b7c210a70fd6b7d4690850551b0399495d861f82c2e813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40818-018-0047-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2933045300?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,21388,21389,21390,23255,27923,27924,33529,33702,33743,34004,34313,41487,42556,43658,43786,43804,43952,44066,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Hintz, Peter</creatorcontrib><title>Non-linear Stability of the Kerr–Newman–de Sitter Family of Charged Black Holes</title><title>Annals of PDE</title><addtitle>Ann. PDE</addtitle><description>We prove the global non-linear stability, without symmetry assumptions, of slowly rotating charged black holes in de Sitter spacetimes in the context of the initial value problem for the Einstein–Maxwell equations: if one perturbs the initial data of a slowly rotating Kerr–Newman–de Sitter (KNdS) black hole, then in a neighborhood of the exterior region of the black hole, the metric and the electromagnetic field decay exponentially fast to their values for a possibly different member of the KNdS family. This is a continuation of recent work of the author with Vasy on the stability of the Kerr–de Sitter family for the Einstein vacuum equations. Our non-linear iteration scheme automatically finds the final black hole parameters as well as the gauge in which the global solution exists; we work in a generalized wave coordinate/Lorenz gauge, with gauge source functions lying in a suitable finite-dimensional space. We include a self-contained proof of the linear mode stability of Reissner–Nordström–de Sitter black holes, building on work by Kodama–Ishibashi. In the course of our non-linear stability argument, we also obtain the first proof of the linear (mode) stability of slowly rotating KNdS black holes using robust perturbative techniques.</description><subject>Black holes</subject><subject>Boundary value problems</subject><subject>Electromagnetic fields</subject><subject>Electromagnetism</subject><subject>Gauges</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Maxwell's equations</subject><subject>Neighborhoods</subject><subject>Partial Differential Equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Rotation</subject><subject>Spacetime</subject><subject>Stability</subject><issn>2524-5317</issn><issn>2199-2576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1OwzAUhC0EEhX0AOwssTY8_8XxEipKEVVZFNaWkzhtSpoUOxXKjjtwQ06CS5BYsRi9WXwzTxqELihcUQB1HQSkNCVwEAhF-iM0YlRrwqRKjqOXTBDJqTpF4xA2AMCoEBKSEVou2obUVeOsx8vOZlVddT1uS9ytHX503n99fC7c-9Y20RQOL6uucx5P7baqf7jJ2vqVK_BtbfNXPGtrF87RSWnr4Ma_9wy9TO-eJzMyf7p_mNzMSc447YnKgJZggWmmhKVacJmpnFGwCsoiyVQhEg2pBClpBlxroWWRJrRMWc5cSvkZuhx6d75927vQmU279018aZjmHITkAJGiA5X7NgTvSrPz1db63lAwh_nMMJ-Bg-J8po8ZNmRCZJuV83_N_4e-AaSecfg</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Hintz, Peter</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20180601</creationdate><title>Non-linear Stability of the Kerr–Newman–de Sitter Family of Charged Black Holes</title><author>Hintz, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c231y-7b01f0a029274a19435b7c210a70fd6b7d4690850551b0399495d861f82c2e813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Black holes</topic><topic>Boundary value problems</topic><topic>Electromagnetic fields</topic><topic>Electromagnetism</topic><topic>Gauges</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Maxwell's equations</topic><topic>Neighborhoods</topic><topic>Partial Differential Equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Rotation</topic><topic>Spacetime</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hintz, Peter</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of PDE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hintz, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-linear Stability of the Kerr–Newman–de Sitter Family of Charged Black Holes</atitle><jtitle>Annals of PDE</jtitle><stitle>Ann. PDE</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>4</volume><issue>1</issue><spage>11</spage><pages>11-</pages><artnum>11</artnum><issn>2524-5317</issn><eissn>2199-2576</eissn><abstract>We prove the global non-linear stability, without symmetry assumptions, of slowly rotating charged black holes in de Sitter spacetimes in the context of the initial value problem for the Einstein–Maxwell equations: if one perturbs the initial data of a slowly rotating Kerr–Newman–de Sitter (KNdS) black hole, then in a neighborhood of the exterior region of the black hole, the metric and the electromagnetic field decay exponentially fast to their values for a possibly different member of the KNdS family. This is a continuation of recent work of the author with Vasy on the stability of the Kerr–de Sitter family for the Einstein vacuum equations. Our non-linear iteration scheme automatically finds the final black hole parameters as well as the gauge in which the global solution exists; we work in a generalized wave coordinate/Lorenz gauge, with gauge source functions lying in a suitable finite-dimensional space. We include a self-contained proof of the linear mode stability of Reissner–Nordström–de Sitter black holes, building on work by Kodama–Ishibashi. In the course of our non-linear stability argument, we also obtain the first proof of the linear (mode) stability of slowly rotating KNdS black holes using robust perturbative techniques.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40818-018-0047-y</doi></addata></record>
fulltext fulltext
identifier ISSN: 2524-5317
ispartof Annals of PDE, 2018-06, Vol.4 (1), p.11, Article 11
issn 2524-5317
2199-2576
language eng
recordid cdi_proquest_journals_2933045300
source ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; ProQuest Central Korea; ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Black holes
Boundary value problems
Electromagnetic fields
Electromagnetism
Gauges
Mathematical analysis
Mathematical Methods in Physics
Maxwell's equations
Neighborhoods
Partial Differential Equations
Physics
Physics and Astronomy
Rotation
Spacetime
Stability
title Non-linear Stability of the Kerr–Newman–de Sitter Family of Charged Black Holes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-linear%20Stability%20of%20the%20Kerr%E2%80%93Newman%E2%80%93de%20Sitter%20Family%20of%20Charged%20Black%20Holes&rft.jtitle=Annals%20of%20PDE&rft.au=Hintz,%20Peter&rft.date=2018-06-01&rft.volume=4&rft.issue=1&rft.spage=11&rft.pages=11-&rft.artnum=11&rft.issn=2524-5317&rft.eissn=2199-2576&rft_id=info:doi/10.1007/s40818-018-0047-y&rft_dat=%3Cproquest_cross%3E2933045300%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933045300&rft_id=info:pmid/&rfr_iscdi=true