Non-linear Stability of the Kerr–Newman–de Sitter Family of Charged Black Holes
We prove the global non-linear stability, without symmetry assumptions, of slowly rotating charged black holes in de Sitter spacetimes in the context of the initial value problem for the Einstein–Maxwell equations: if one perturbs the initial data of a slowly rotating Kerr–Newman–de Sitter (KNdS) bl...
Gespeichert in:
Veröffentlicht in: | Annals of PDE 2018-06, Vol.4 (1), p.11, Article 11 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 11 |
container_title | Annals of PDE |
container_volume | 4 |
creator | Hintz, Peter |
description | We prove the global non-linear stability, without symmetry assumptions, of slowly rotating charged black holes in de Sitter spacetimes in the context of the initial value problem for the Einstein–Maxwell equations: if one perturbs the initial data of a slowly rotating Kerr–Newman–de Sitter (KNdS) black hole, then in a neighborhood of the exterior region of the black hole, the metric and the electromagnetic field decay exponentially fast to their values for a possibly different member of the KNdS family. This is a continuation of recent work of the author with Vasy on the stability of the Kerr–de Sitter family for the Einstein vacuum equations. Our non-linear iteration scheme automatically finds the final black hole parameters as well as the gauge in which the global solution exists; we work in a generalized wave coordinate/Lorenz gauge, with gauge source functions lying in a suitable finite-dimensional space. We include a self-contained proof of the linear mode stability of Reissner–Nordström–de Sitter black holes, building on work by Kodama–Ishibashi. In the course of our non-linear stability argument, we also obtain the first proof of the linear (mode) stability of slowly rotating KNdS black holes using robust perturbative techniques. |
doi_str_mv | 10.1007/s40818-018-0047-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933045300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933045300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c231y-7b01f0a029274a19435b7c210a70fd6b7d4690850551b0399495d861f82c2e813</originalsourceid><addsrcrecordid>eNp1kE1OwzAUhC0EEhX0AOwssTY8_8XxEipKEVVZFNaWkzhtSpoUOxXKjjtwQ06CS5BYsRi9WXwzTxqELihcUQB1HQSkNCVwEAhF-iM0YlRrwqRKjqOXTBDJqTpF4xA2AMCoEBKSEVou2obUVeOsx8vOZlVddT1uS9ytHX503n99fC7c-9Y20RQOL6uucx5P7baqf7jJ2vqVK_BtbfNXPGtrF87RSWnr4Ma_9wy9TO-eJzMyf7p_mNzMSc447YnKgJZggWmmhKVacJmpnFGwCsoiyVQhEg2pBClpBlxroWWRJrRMWc5cSvkZuhx6d75927vQmU279018aZjmHITkAJGiA5X7NgTvSrPz1db63lAwh_nMMJ-Bg-J8po8ZNmRCZJuV83_N_4e-AaSecfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933045300</pqid></control><display><type>article</type><title>Non-linear Stability of the Kerr–Newman–de Sitter Family of Charged Black Holes</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Hintz, Peter</creator><creatorcontrib>Hintz, Peter</creatorcontrib><description>We prove the global non-linear stability, without symmetry assumptions, of slowly rotating charged black holes in de Sitter spacetimes in the context of the initial value problem for the Einstein–Maxwell equations: if one perturbs the initial data of a slowly rotating Kerr–Newman–de Sitter (KNdS) black hole, then in a neighborhood of the exterior region of the black hole, the metric and the electromagnetic field decay exponentially fast to their values for a possibly different member of the KNdS family. This is a continuation of recent work of the author with Vasy on the stability of the Kerr–de Sitter family for the Einstein vacuum equations. Our non-linear iteration scheme automatically finds the final black hole parameters as well as the gauge in which the global solution exists; we work in a generalized wave coordinate/Lorenz gauge, with gauge source functions lying in a suitable finite-dimensional space. We include a self-contained proof of the linear mode stability of Reissner–Nordström–de Sitter black holes, building on work by Kodama–Ishibashi. In the course of our non-linear stability argument, we also obtain the first proof of the linear (mode) stability of slowly rotating KNdS black holes using robust perturbative techniques.</description><identifier>ISSN: 2524-5317</identifier><identifier>EISSN: 2199-2576</identifier><identifier>DOI: 10.1007/s40818-018-0047-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Black holes ; Boundary value problems ; Electromagnetic fields ; Electromagnetism ; Gauges ; Mathematical analysis ; Mathematical Methods in Physics ; Maxwell's equations ; Neighborhoods ; Partial Differential Equations ; Physics ; Physics and Astronomy ; Rotation ; Spacetime ; Stability</subject><ispartof>Annals of PDE, 2018-06, Vol.4 (1), p.11, Article 11</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>Springer International Publishing AG, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c231y-7b01f0a029274a19435b7c210a70fd6b7d4690850551b0399495d861f82c2e813</citedby><cites>FETCH-LOGICAL-c231y-7b01f0a029274a19435b7c210a70fd6b7d4690850551b0399495d861f82c2e813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40818-018-0047-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2933045300?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,21388,21389,21390,23255,27923,27924,33529,33702,33743,34004,34313,41487,42556,43658,43786,43804,43952,44066,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Hintz, Peter</creatorcontrib><title>Non-linear Stability of the Kerr–Newman–de Sitter Family of Charged Black Holes</title><title>Annals of PDE</title><addtitle>Ann. PDE</addtitle><description>We prove the global non-linear stability, without symmetry assumptions, of slowly rotating charged black holes in de Sitter spacetimes in the context of the initial value problem for the Einstein–Maxwell equations: if one perturbs the initial data of a slowly rotating Kerr–Newman–de Sitter (KNdS) black hole, then in a neighborhood of the exterior region of the black hole, the metric and the electromagnetic field decay exponentially fast to their values for a possibly different member of the KNdS family. This is a continuation of recent work of the author with Vasy on the stability of the Kerr–de Sitter family for the Einstein vacuum equations. Our non-linear iteration scheme automatically finds the final black hole parameters as well as the gauge in which the global solution exists; we work in a generalized wave coordinate/Lorenz gauge, with gauge source functions lying in a suitable finite-dimensional space. We include a self-contained proof of the linear mode stability of Reissner–Nordström–de Sitter black holes, building on work by Kodama–Ishibashi. In the course of our non-linear stability argument, we also obtain the first proof of the linear (mode) stability of slowly rotating KNdS black holes using robust perturbative techniques.</description><subject>Black holes</subject><subject>Boundary value problems</subject><subject>Electromagnetic fields</subject><subject>Electromagnetism</subject><subject>Gauges</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Maxwell's equations</subject><subject>Neighborhoods</subject><subject>Partial Differential Equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Rotation</subject><subject>Spacetime</subject><subject>Stability</subject><issn>2524-5317</issn><issn>2199-2576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1OwzAUhC0EEhX0AOwssTY8_8XxEipKEVVZFNaWkzhtSpoUOxXKjjtwQ06CS5BYsRi9WXwzTxqELihcUQB1HQSkNCVwEAhF-iM0YlRrwqRKjqOXTBDJqTpF4xA2AMCoEBKSEVou2obUVeOsx8vOZlVddT1uS9ytHX503n99fC7c-9Y20RQOL6uucx5P7baqf7jJ2vqVK_BtbfNXPGtrF87RSWnr4Ma_9wy9TO-eJzMyf7p_mNzMSc447YnKgJZggWmmhKVacJmpnFGwCsoiyVQhEg2pBClpBlxroWWRJrRMWc5cSvkZuhx6d75927vQmU279018aZjmHITkAJGiA5X7NgTvSrPz1db63lAwh_nMMJ-Bg-J8po8ZNmRCZJuV83_N_4e-AaSecfg</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Hintz, Peter</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20180601</creationdate><title>Non-linear Stability of the Kerr–Newman–de Sitter Family of Charged Black Holes</title><author>Hintz, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c231y-7b01f0a029274a19435b7c210a70fd6b7d4690850551b0399495d861f82c2e813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Black holes</topic><topic>Boundary value problems</topic><topic>Electromagnetic fields</topic><topic>Electromagnetism</topic><topic>Gauges</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Maxwell's equations</topic><topic>Neighborhoods</topic><topic>Partial Differential Equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Rotation</topic><topic>Spacetime</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hintz, Peter</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of PDE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hintz, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-linear Stability of the Kerr–Newman–de Sitter Family of Charged Black Holes</atitle><jtitle>Annals of PDE</jtitle><stitle>Ann. PDE</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>4</volume><issue>1</issue><spage>11</spage><pages>11-</pages><artnum>11</artnum><issn>2524-5317</issn><eissn>2199-2576</eissn><abstract>We prove the global non-linear stability, without symmetry assumptions, of slowly rotating charged black holes in de Sitter spacetimes in the context of the initial value problem for the Einstein–Maxwell equations: if one perturbs the initial data of a slowly rotating Kerr–Newman–de Sitter (KNdS) black hole, then in a neighborhood of the exterior region of the black hole, the metric and the electromagnetic field decay exponentially fast to their values for a possibly different member of the KNdS family. This is a continuation of recent work of the author with Vasy on the stability of the Kerr–de Sitter family for the Einstein vacuum equations. Our non-linear iteration scheme automatically finds the final black hole parameters as well as the gauge in which the global solution exists; we work in a generalized wave coordinate/Lorenz gauge, with gauge source functions lying in a suitable finite-dimensional space. We include a self-contained proof of the linear mode stability of Reissner–Nordström–de Sitter black holes, building on work by Kodama–Ishibashi. In the course of our non-linear stability argument, we also obtain the first proof of the linear (mode) stability of slowly rotating KNdS black holes using robust perturbative techniques.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40818-018-0047-y</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2524-5317 |
ispartof | Annals of PDE, 2018-06, Vol.4 (1), p.11, Article 11 |
issn | 2524-5317 2199-2576 |
language | eng |
recordid | cdi_proquest_journals_2933045300 |
source | ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; ProQuest Central Korea; ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Black holes Boundary value problems Electromagnetic fields Electromagnetism Gauges Mathematical analysis Mathematical Methods in Physics Maxwell's equations Neighborhoods Partial Differential Equations Physics Physics and Astronomy Rotation Spacetime Stability |
title | Non-linear Stability of the Kerr–Newman–de Sitter Family of Charged Black Holes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-linear%20Stability%20of%20the%20Kerr%E2%80%93Newman%E2%80%93de%20Sitter%20Family%20of%20Charged%20Black%20Holes&rft.jtitle=Annals%20of%20PDE&rft.au=Hintz,%20Peter&rft.date=2018-06-01&rft.volume=4&rft.issue=1&rft.spage=11&rft.pages=11-&rft.artnum=11&rft.issn=2524-5317&rft.eissn=2199-2576&rft_id=info:doi/10.1007/s40818-018-0047-y&rft_dat=%3Cproquest_cross%3E2933045300%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933045300&rft_id=info:pmid/&rfr_iscdi=true |