Static condensation in modeling roller guides with preload
This article presents the methodology for modeling the stiffness of a machine tool load-bearing system using the finite element method. A new, simplified model of stiffness of the linear guide with a preload based on equivalent contact model was proposed. An equivalent contract model was developed w...
Gespeichert in:
Veröffentlicht in: | Archives of Civil and Mechanical Engineering 2019-08, Vol.19 (4), p.1072-1082 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1082 |
---|---|
container_issue | 4 |
container_start_page | 1072 |
container_title | Archives of Civil and Mechanical Engineering |
container_volume | 19 |
creator | Dunaj, Paweł Berczyński, Stefan Pawełko, Piotr Grządziel, Zenon Chodźko, Marcin |
description | This article presents the methodology for modeling the stiffness of a machine tool load-bearing system using the finite element method. A new, simplified model of stiffness of the linear guide with a preload based on equivalent contact model was proposed. An equivalent contract model was developed where the ball was replaced with four rod elements of equivalent stiffness, interconnecting the opposite ends of the face of cuboidal finite elements. To shorten the computation time and facilitate modeling reduction and substructuring methods was used. The accuracy of the proposed model was compared with experimental results. In addition, the computation times were evaluated by comparing the simplified model with the full model and other equivalent models. Then, the model was used to determine the stiffness of the machine load-bearing system on the example of a machining table using the aforementioned methods and the obtained results were compared in terms of accuracy (less than 1% difference in maximum displacement value) and computation time with the classic approach (up to 97% in time reduction). This paper demonstrated the validity of the proposed model, allowing accurate and fast determination of the stiffness of machine tool load-bearing system. |
doi_str_mv | 10.1016/j.acme.2019.06.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932841717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1644966519300688</els_id><sourcerecordid>2932841717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-2bb6e17b3886f3ede639c8d040ff21ba6654b232fa66f1a351fbf8db310d65e03</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EElXpC3CKxDlhbSdOgrigij-pEgfgbCX2ujhK7WKnIN4eV0Xi1tPOYb7Z3SHkkkJBgYrroejUBgsGtC1AFADVCZkxaHjOOW1OyYyKssxbIapzsohxAAAKNaOimpGb16mbrMqUdxpdTNq7zLps4zWO1q2z4McRQ7beWY0x-7bTR7YNOPpOX5Az040RF39zTt4f7t-WT_nq5fF5ebfKFa_ZlLO-F0jrnjeNMBw1Ct6qRkMJxjDad-mssmecmaQM7XhFTW8a3XMKWlQIfE6uDrnb4D93GCc5-F1waaVkLWdNSWtaJxc7uFTwMQY0chvspgs_koLc1yQHua9J7muSIGSqKUH8AMVkdmsM_9FHqdsDhenrL5uoqCw6hdoGVJPU3h7DfwHatIC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932841717</pqid></control><display><type>article</type><title>Static condensation in modeling roller guides with preload</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Dunaj, Paweł ; Berczyński, Stefan ; Pawełko, Piotr ; Grządziel, Zenon ; Chodźko, Marcin</creator><creatorcontrib>Dunaj, Paweł ; Berczyński, Stefan ; Pawełko, Piotr ; Grządziel, Zenon ; Chodźko, Marcin</creatorcontrib><description>This article presents the methodology for modeling the stiffness of a machine tool load-bearing system using the finite element method. A new, simplified model of stiffness of the linear guide with a preload based on equivalent contact model was proposed. An equivalent contract model was developed where the ball was replaced with four rod elements of equivalent stiffness, interconnecting the opposite ends of the face of cuboidal finite elements. To shorten the computation time and facilitate modeling reduction and substructuring methods was used. The accuracy of the proposed model was compared with experimental results. In addition, the computation times were evaluated by comparing the simplified model with the full model and other equivalent models. Then, the model was used to determine the stiffness of the machine load-bearing system on the example of a machining table using the aforementioned methods and the obtained results were compared in terms of accuracy (less than 1% difference in maximum displacement value) and computation time with the classic approach (up to 97% in time reduction). This paper demonstrated the validity of the proposed model, allowing accurate and fast determination of the stiffness of machine tool load-bearing system.</description><identifier>ISSN: 1644-9665</identifier><identifier>EISSN: 2083-3318</identifier><identifier>EISSN: 1644-9665</identifier><identifier>DOI: 10.1016/j.acme.2019.06.005</identifier><language>eng</language><publisher>London: Elsevier B.V</publisher><subject>Accuracy ; Civil Engineering ; Computing time ; Contact angle ; Deformation ; Engineering ; Equivalence ; FEM ; Finite element analysis ; Finite element method ; Guideway system ; Load ; Load bearing elements ; Machine tool ; Machine tools ; Machining ; Mechanical Engineering ; Original Research Article ; Reduction ; Research methodology ; Roller guides ; Static reduction ; Stiffness ; Structural Materials</subject><ispartof>Archives of Civil and Mechanical Engineering, 2019-08, Vol.19 (4), p.1072-1082</ispartof><rights>2019 Politechnika Wrocławska</rights><rights>Wroclaw University of Science and Technology 2019</rights><rights>Copyright Springer Nature B.V. Dec 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-2bb6e17b3886f3ede639c8d040ff21ba6654b232fa66f1a351fbf8db310d65e03</citedby><cites>FETCH-LOGICAL-c372t-2bb6e17b3886f3ede639c8d040ff21ba6654b232fa66f1a351fbf8db310d65e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1016/j.acme.2019.06.005$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2932841717?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21393,27929,27930,33749,41493,42562,43810,51324,64390,64394,72474</link.rule.ids></links><search><creatorcontrib>Dunaj, Paweł</creatorcontrib><creatorcontrib>Berczyński, Stefan</creatorcontrib><creatorcontrib>Pawełko, Piotr</creatorcontrib><creatorcontrib>Grządziel, Zenon</creatorcontrib><creatorcontrib>Chodźko, Marcin</creatorcontrib><title>Static condensation in modeling roller guides with preload</title><title>Archives of Civil and Mechanical Engineering</title><addtitle>Archiv.Civ.Mech.Eng</addtitle><description>This article presents the methodology for modeling the stiffness of a machine tool load-bearing system using the finite element method. A new, simplified model of stiffness of the linear guide with a preload based on equivalent contact model was proposed. An equivalent contract model was developed where the ball was replaced with four rod elements of equivalent stiffness, interconnecting the opposite ends of the face of cuboidal finite elements. To shorten the computation time and facilitate modeling reduction and substructuring methods was used. The accuracy of the proposed model was compared with experimental results. In addition, the computation times were evaluated by comparing the simplified model with the full model and other equivalent models. Then, the model was used to determine the stiffness of the machine load-bearing system on the example of a machining table using the aforementioned methods and the obtained results were compared in terms of accuracy (less than 1% difference in maximum displacement value) and computation time with the classic approach (up to 97% in time reduction). This paper demonstrated the validity of the proposed model, allowing accurate and fast determination of the stiffness of machine tool load-bearing system.</description><subject>Accuracy</subject><subject>Civil Engineering</subject><subject>Computing time</subject><subject>Contact angle</subject><subject>Deformation</subject><subject>Engineering</subject><subject>Equivalence</subject><subject>FEM</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Guideway system</subject><subject>Load</subject><subject>Load bearing elements</subject><subject>Machine tool</subject><subject>Machine tools</subject><subject>Machining</subject><subject>Mechanical Engineering</subject><subject>Original Research Article</subject><subject>Reduction</subject><subject>Research methodology</subject><subject>Roller guides</subject><subject>Static reduction</subject><subject>Stiffness</subject><subject>Structural Materials</subject><issn>1644-9665</issn><issn>2083-3318</issn><issn>1644-9665</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1OwzAQhC0EElXpC3CKxDlhbSdOgrigij-pEgfgbCX2ujhK7WKnIN4eV0Xi1tPOYb7Z3SHkkkJBgYrroejUBgsGtC1AFADVCZkxaHjOOW1OyYyKssxbIapzsohxAAAKNaOimpGb16mbrMqUdxpdTNq7zLps4zWO1q2z4McRQ7beWY0x-7bTR7YNOPpOX5Az040RF39zTt4f7t-WT_nq5fF5ebfKFa_ZlLO-F0jrnjeNMBw1Ct6qRkMJxjDad-mssmecmaQM7XhFTW8a3XMKWlQIfE6uDrnb4D93GCc5-F1waaVkLWdNSWtaJxc7uFTwMQY0chvspgs_koLc1yQHua9J7muSIGSqKUH8AMVkdmsM_9FHqdsDhenrL5uoqCw6hdoGVJPU3h7DfwHatIC8</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Dunaj, Paweł</creator><creator>Berczyński, Stefan</creator><creator>Pawełko, Piotr</creator><creator>Grządziel, Zenon</creator><creator>Chodźko, Marcin</creator><general>Elsevier B.V</general><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190801</creationdate><title>Static condensation in modeling roller guides with preload</title><author>Dunaj, Paweł ; Berczyński, Stefan ; Pawełko, Piotr ; Grządziel, Zenon ; Chodźko, Marcin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-2bb6e17b3886f3ede639c8d040ff21ba6654b232fa66f1a351fbf8db310d65e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Civil Engineering</topic><topic>Computing time</topic><topic>Contact angle</topic><topic>Deformation</topic><topic>Engineering</topic><topic>Equivalence</topic><topic>FEM</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Guideway system</topic><topic>Load</topic><topic>Load bearing elements</topic><topic>Machine tool</topic><topic>Machine tools</topic><topic>Machining</topic><topic>Mechanical Engineering</topic><topic>Original Research Article</topic><topic>Reduction</topic><topic>Research methodology</topic><topic>Roller guides</topic><topic>Static reduction</topic><topic>Stiffness</topic><topic>Structural Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunaj, Paweł</creatorcontrib><creatorcontrib>Berczyński, Stefan</creatorcontrib><creatorcontrib>Pawełko, Piotr</creatorcontrib><creatorcontrib>Grządziel, Zenon</creatorcontrib><creatorcontrib>Chodźko, Marcin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Archives of Civil and Mechanical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunaj, Paweł</au><au>Berczyński, Stefan</au><au>Pawełko, Piotr</au><au>Grządziel, Zenon</au><au>Chodźko, Marcin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Static condensation in modeling roller guides with preload</atitle><jtitle>Archives of Civil and Mechanical Engineering</jtitle><stitle>Archiv.Civ.Mech.Eng</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>19</volume><issue>4</issue><spage>1072</spage><epage>1082</epage><pages>1072-1082</pages><issn>1644-9665</issn><eissn>2083-3318</eissn><eissn>1644-9665</eissn><abstract>This article presents the methodology for modeling the stiffness of a machine tool load-bearing system using the finite element method. A new, simplified model of stiffness of the linear guide with a preload based on equivalent contact model was proposed. An equivalent contract model was developed where the ball was replaced with four rod elements of equivalent stiffness, interconnecting the opposite ends of the face of cuboidal finite elements. To shorten the computation time and facilitate modeling reduction and substructuring methods was used. The accuracy of the proposed model was compared with experimental results. In addition, the computation times were evaluated by comparing the simplified model with the full model and other equivalent models. Then, the model was used to determine the stiffness of the machine load-bearing system on the example of a machining table using the aforementioned methods and the obtained results were compared in terms of accuracy (less than 1% difference in maximum displacement value) and computation time with the classic approach (up to 97% in time reduction). This paper demonstrated the validity of the proposed model, allowing accurate and fast determination of the stiffness of machine tool load-bearing system.</abstract><cop>London</cop><pub>Elsevier B.V</pub><doi>10.1016/j.acme.2019.06.005</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1644-9665 |
ispartof | Archives of Civil and Mechanical Engineering, 2019-08, Vol.19 (4), p.1072-1082 |
issn | 1644-9665 2083-3318 1644-9665 |
language | eng |
recordid | cdi_proquest_journals_2932841717 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Accuracy Civil Engineering Computing time Contact angle Deformation Engineering Equivalence FEM Finite element analysis Finite element method Guideway system Load Load bearing elements Machine tool Machine tools Machining Mechanical Engineering Original Research Article Reduction Research methodology Roller guides Static reduction Stiffness Structural Materials |
title | Static condensation in modeling roller guides with preload |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T03%3A00%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Static%20condensation%20in%20modeling%20roller%20guides%20with%20preload&rft.jtitle=Archives%20of%20Civil%20and%20Mechanical%20Engineering&rft.au=Dunaj,%20Pawe%C5%82&rft.date=2019-08-01&rft.volume=19&rft.issue=4&rft.spage=1072&rft.epage=1082&rft.pages=1072-1082&rft.issn=1644-9665&rft.eissn=2083-3318&rft_id=info:doi/10.1016/j.acme.2019.06.005&rft_dat=%3Cproquest_cross%3E2932841717%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932841717&rft_id=info:pmid/&rft_els_id=S1644966519300688&rfr_iscdi=true |