Sea State Estimation from Uncalibrated, Monoscopic Video
Video of the ocean surface is used as a means for estimating the sea state. Time series of pixel intensity values are given as input to a method that uses the Kalman filter and the least squares approximate solution for estimating the uncalibrated video amplitude spectrum. A method is proposed for s...
Gespeichert in:
Veröffentlicht in: | SN computer science 2021-07, Vol.2 (4), p.328, Article 328 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 328 |
container_title | SN computer science |
container_volume | 2 |
creator | Loizou, Antonis Christmas, Jacqueline |
description | Video of the ocean surface is used as a means for estimating the sea state. Time series of pixel intensity values are given as input to a method that uses the Kalman filter and the least squares approximate solution for estimating the uncalibrated video amplitude spectrum. A method is proposed for scaling this spectrum to metres with the use of an empirical model of the ocean. The significant wave height is estimated from the calibrated video amplitude spectrum. The results are tested against two sets of video data, and buoy measurements in both cases are solely used for indicating the true state. For significant wave height values between 0.5 and 3.6 m, the maximum observed value of root mean square error is 0.37 m and of mean absolute percentage error 16%. |
doi_str_mv | 10.1007/s42979-021-00727-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932788677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932788677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2080-97fa40ad726e8f60401b37e3987c5c440737bbc4fc517c1d11acad07dfe04343</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKcFr0YnH7uTHKXUD6h4aBVvIZvNypZ2U5PtwX9v7ArePM0M877vMA8hlwxuGADeJsk1agqc0TxypHBCJryqGFUa8PTYc6p1-X5OZiltAICXIGVVTohaeVusBjv4YpGGbmeHLvRFG8OueO2d3XZ1zLvmungOfUgu7DtXvHWNDxfkrLXb5Ge_dUrW94v1_JEuXx6e5ndL6jgooBpbK8E2yCuv2goksFqgF1qhK52UgALr2snWlQwdaxizzjaATetBCimm5GqM3cfwefBpMJtwiH2-aLgWHJWqELOKjyoXQ0rRt2Yf8y_xyzAwP4zMyMhkRubIyEA2idGUsrj_8PEv-h_XN-H1Z_M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932788677</pqid></control><display><type>article</type><title>Sea State Estimation from Uncalibrated, Monoscopic Video</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Loizou, Antonis ; Christmas, Jacqueline</creator><creatorcontrib>Loizou, Antonis ; Christmas, Jacqueline</creatorcontrib><description>Video of the ocean surface is used as a means for estimating the sea state. Time series of pixel intensity values are given as input to a method that uses the Kalman filter and the least squares approximate solution for estimating the uncalibrated video amplitude spectrum. A method is proposed for scaling this spectrum to metres with the use of an empirical model of the ocean. The significant wave height is estimated from the calibrated video amplitude spectrum. The results are tested against two sets of video data, and buoy measurements in both cases are solely used for indicating the true state. For significant wave height values between 0.5 and 3.6 m, the maximum observed value of root mean square error is 0.37 m and of mean absolute percentage error 16%.</description><identifier>ISSN: 2662-995X</identifier><identifier>EISSN: 2661-8907</identifier><identifier>DOI: 10.1007/s42979-021-00727-0</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Algorithms ; Amplitudes ; Approximation ; Bathymetry ; Cameras ; Computer Imaging ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Information Theory ; Energy ; Fourier transforms ; Information Systems and Communication Service ; Kalman filters ; Maximum likelihood method ; Ocean surface ; Original Research ; Pattern Recognition and Graphics ; Sea states ; Software Engineering/Programming and Operating Systems ; State estimation ; Time series ; Video data ; Vision ; Wave height</subject><ispartof>SN computer science, 2021-07, Vol.2 (4), p.328, Article 328</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2080-97fa40ad726e8f60401b37e3987c5c440737bbc4fc517c1d11acad07dfe04343</citedby><cites>FETCH-LOGICAL-c2080-97fa40ad726e8f60401b37e3987c5c440737bbc4fc517c1d11acad07dfe04343</cites><orcidid>0000-0001-8447-4120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42979-021-00727-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2932788677?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Loizou, Antonis</creatorcontrib><creatorcontrib>Christmas, Jacqueline</creatorcontrib><title>Sea State Estimation from Uncalibrated, Monoscopic Video</title><title>SN computer science</title><addtitle>SN COMPUT. SCI</addtitle><description>Video of the ocean surface is used as a means for estimating the sea state. Time series of pixel intensity values are given as input to a method that uses the Kalman filter and the least squares approximate solution for estimating the uncalibrated video amplitude spectrum. A method is proposed for scaling this spectrum to metres with the use of an empirical model of the ocean. The significant wave height is estimated from the calibrated video amplitude spectrum. The results are tested against two sets of video data, and buoy measurements in both cases are solely used for indicating the true state. For significant wave height values between 0.5 and 3.6 m, the maximum observed value of root mean square error is 0.37 m and of mean absolute percentage error 16%.</description><subject>Algorithms</subject><subject>Amplitudes</subject><subject>Approximation</subject><subject>Bathymetry</subject><subject>Cameras</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>Energy</subject><subject>Fourier transforms</subject><subject>Information Systems and Communication Service</subject><subject>Kalman filters</subject><subject>Maximum likelihood method</subject><subject>Ocean surface</subject><subject>Original Research</subject><subject>Pattern Recognition and Graphics</subject><subject>Sea states</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>State estimation</subject><subject>Time series</subject><subject>Video data</subject><subject>Vision</subject><subject>Wave height</subject><issn>2662-995X</issn><issn>2661-8907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWGr_gKcFr0YnH7uTHKXUD6h4aBVvIZvNypZ2U5PtwX9v7ArePM0M877vMA8hlwxuGADeJsk1agqc0TxypHBCJryqGFUa8PTYc6p1-X5OZiltAICXIGVVTohaeVusBjv4YpGGbmeHLvRFG8OueO2d3XZ1zLvmungOfUgu7DtXvHWNDxfkrLXb5Ge_dUrW94v1_JEuXx6e5ndL6jgooBpbK8E2yCuv2goksFqgF1qhK52UgALr2snWlQwdaxizzjaATetBCimm5GqM3cfwefBpMJtwiH2-aLgWHJWqELOKjyoXQ0rRt2Yf8y_xyzAwP4zMyMhkRubIyEA2idGUsrj_8PEv-h_XN-H1Z_M</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Loizou, Antonis</creator><creator>Christmas, Jacqueline</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-8447-4120</orcidid></search><sort><creationdate>20210701</creationdate><title>Sea State Estimation from Uncalibrated, Monoscopic Video</title><author>Loizou, Antonis ; Christmas, Jacqueline</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2080-97fa40ad726e8f60401b37e3987c5c440737bbc4fc517c1d11acad07dfe04343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Amplitudes</topic><topic>Approximation</topic><topic>Bathymetry</topic><topic>Cameras</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>Energy</topic><topic>Fourier transforms</topic><topic>Information Systems and Communication Service</topic><topic>Kalman filters</topic><topic>Maximum likelihood method</topic><topic>Ocean surface</topic><topic>Original Research</topic><topic>Pattern Recognition and Graphics</topic><topic>Sea states</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>State estimation</topic><topic>Time series</topic><topic>Video data</topic><topic>Vision</topic><topic>Wave height</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loizou, Antonis</creatorcontrib><creatorcontrib>Christmas, Jacqueline</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SN computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loizou, Antonis</au><au>Christmas, Jacqueline</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sea State Estimation from Uncalibrated, Monoscopic Video</atitle><jtitle>SN computer science</jtitle><stitle>SN COMPUT. SCI</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>2</volume><issue>4</issue><spage>328</spage><pages>328-</pages><artnum>328</artnum><issn>2662-995X</issn><eissn>2661-8907</eissn><abstract>Video of the ocean surface is used as a means for estimating the sea state. Time series of pixel intensity values are given as input to a method that uses the Kalman filter and the least squares approximate solution for estimating the uncalibrated video amplitude spectrum. A method is proposed for scaling this spectrum to metres with the use of an empirical model of the ocean. The significant wave height is estimated from the calibrated video amplitude spectrum. The results are tested against two sets of video data, and buoy measurements in both cases are solely used for indicating the true state. For significant wave height values between 0.5 and 3.6 m, the maximum observed value of root mean square error is 0.37 m and of mean absolute percentage error 16%.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s42979-021-00727-0</doi><orcidid>https://orcid.org/0000-0001-8447-4120</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2662-995X |
ispartof | SN computer science, 2021-07, Vol.2 (4), p.328, Article 328 |
issn | 2662-995X 2661-8907 |
language | eng |
recordid | cdi_proquest_journals_2932788677 |
source | SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Algorithms Amplitudes Approximation Bathymetry Cameras Computer Imaging Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Energy Fourier transforms Information Systems and Communication Service Kalman filters Maximum likelihood method Ocean surface Original Research Pattern Recognition and Graphics Sea states Software Engineering/Programming and Operating Systems State estimation Time series Video data Vision Wave height |
title | Sea State Estimation from Uncalibrated, Monoscopic Video |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sea%20State%20Estimation%20from%20Uncalibrated,%20Monoscopic%20Video&rft.jtitle=SN%20computer%20science&rft.au=Loizou,%20Antonis&rft.date=2021-07-01&rft.volume=2&rft.issue=4&rft.spage=328&rft.pages=328-&rft.artnum=328&rft.issn=2662-995X&rft.eissn=2661-8907&rft_id=info:doi/10.1007/s42979-021-00727-0&rft_dat=%3Cproquest_cross%3E2932788677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932788677&rft_id=info:pmid/&rfr_iscdi=true |