Sea State Estimation from Uncalibrated, Monoscopic Video

Video of the ocean surface is used as a means for estimating the sea state. Time series of pixel intensity values are given as input to a method that uses the Kalman filter and the least squares approximate solution for estimating the uncalibrated video amplitude spectrum. A method is proposed for s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN computer science 2021-07, Vol.2 (4), p.328, Article 328
Hauptverfasser: Loizou, Antonis, Christmas, Jacqueline
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 328
container_title SN computer science
container_volume 2
creator Loizou, Antonis
Christmas, Jacqueline
description Video of the ocean surface is used as a means for estimating the sea state. Time series of pixel intensity values are given as input to a method that uses the Kalman filter and the least squares approximate solution for estimating the uncalibrated video amplitude spectrum. A method is proposed for scaling this spectrum to metres with the use of an empirical model of the ocean. The significant wave height is estimated from the calibrated video amplitude spectrum. The results are tested against two sets of video data, and buoy measurements in both cases are solely used for indicating the true state. For significant wave height values between 0.5 and 3.6 m, the maximum observed value of root mean square error is 0.37 m and of mean absolute percentage error 16%.
doi_str_mv 10.1007/s42979-021-00727-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932788677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932788677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2080-97fa40ad726e8f60401b37e3987c5c440737bbc4fc517c1d11acad07dfe04343</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKcFr0YnH7uTHKXUD6h4aBVvIZvNypZ2U5PtwX9v7ArePM0M877vMA8hlwxuGADeJsk1agqc0TxypHBCJryqGFUa8PTYc6p1-X5OZiltAICXIGVVTohaeVusBjv4YpGGbmeHLvRFG8OueO2d3XZ1zLvmungOfUgu7DtXvHWNDxfkrLXb5Ge_dUrW94v1_JEuXx6e5ndL6jgooBpbK8E2yCuv2goksFqgF1qhK52UgALr2snWlQwdaxizzjaATetBCimm5GqM3cfwefBpMJtwiH2-aLgWHJWqELOKjyoXQ0rRt2Yf8y_xyzAwP4zMyMhkRubIyEA2idGUsrj_8PEv-h_XN-H1Z_M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932788677</pqid></control><display><type>article</type><title>Sea State Estimation from Uncalibrated, Monoscopic Video</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Loizou, Antonis ; Christmas, Jacqueline</creator><creatorcontrib>Loizou, Antonis ; Christmas, Jacqueline</creatorcontrib><description>Video of the ocean surface is used as a means for estimating the sea state. Time series of pixel intensity values are given as input to a method that uses the Kalman filter and the least squares approximate solution for estimating the uncalibrated video amplitude spectrum. A method is proposed for scaling this spectrum to metres with the use of an empirical model of the ocean. The significant wave height is estimated from the calibrated video amplitude spectrum. The results are tested against two sets of video data, and buoy measurements in both cases are solely used for indicating the true state. For significant wave height values between 0.5 and 3.6 m, the maximum observed value of root mean square error is 0.37 m and of mean absolute percentage error 16%.</description><identifier>ISSN: 2662-995X</identifier><identifier>EISSN: 2661-8907</identifier><identifier>DOI: 10.1007/s42979-021-00727-0</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Algorithms ; Amplitudes ; Approximation ; Bathymetry ; Cameras ; Computer Imaging ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Information Theory ; Energy ; Fourier transforms ; Information Systems and Communication Service ; Kalman filters ; Maximum likelihood method ; Ocean surface ; Original Research ; Pattern Recognition and Graphics ; Sea states ; Software Engineering/Programming and Operating Systems ; State estimation ; Time series ; Video data ; Vision ; Wave height</subject><ispartof>SN computer science, 2021-07, Vol.2 (4), p.328, Article 328</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2080-97fa40ad726e8f60401b37e3987c5c440737bbc4fc517c1d11acad07dfe04343</citedby><cites>FETCH-LOGICAL-c2080-97fa40ad726e8f60401b37e3987c5c440737bbc4fc517c1d11acad07dfe04343</cites><orcidid>0000-0001-8447-4120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42979-021-00727-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2932788677?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Loizou, Antonis</creatorcontrib><creatorcontrib>Christmas, Jacqueline</creatorcontrib><title>Sea State Estimation from Uncalibrated, Monoscopic Video</title><title>SN computer science</title><addtitle>SN COMPUT. SCI</addtitle><description>Video of the ocean surface is used as a means for estimating the sea state. Time series of pixel intensity values are given as input to a method that uses the Kalman filter and the least squares approximate solution for estimating the uncalibrated video amplitude spectrum. A method is proposed for scaling this spectrum to metres with the use of an empirical model of the ocean. The significant wave height is estimated from the calibrated video amplitude spectrum. The results are tested against two sets of video data, and buoy measurements in both cases are solely used for indicating the true state. For significant wave height values between 0.5 and 3.6 m, the maximum observed value of root mean square error is 0.37 m and of mean absolute percentage error 16%.</description><subject>Algorithms</subject><subject>Amplitudes</subject><subject>Approximation</subject><subject>Bathymetry</subject><subject>Cameras</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>Energy</subject><subject>Fourier transforms</subject><subject>Information Systems and Communication Service</subject><subject>Kalman filters</subject><subject>Maximum likelihood method</subject><subject>Ocean surface</subject><subject>Original Research</subject><subject>Pattern Recognition and Graphics</subject><subject>Sea states</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>State estimation</subject><subject>Time series</subject><subject>Video data</subject><subject>Vision</subject><subject>Wave height</subject><issn>2662-995X</issn><issn>2661-8907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWGr_gKcFr0YnH7uTHKXUD6h4aBVvIZvNypZ2U5PtwX9v7ArePM0M877vMA8hlwxuGADeJsk1agqc0TxypHBCJryqGFUa8PTYc6p1-X5OZiltAICXIGVVTohaeVusBjv4YpGGbmeHLvRFG8OueO2d3XZ1zLvmungOfUgu7DtXvHWNDxfkrLXb5Ge_dUrW94v1_JEuXx6e5ndL6jgooBpbK8E2yCuv2goksFqgF1qhK52UgALr2snWlQwdaxizzjaATetBCimm5GqM3cfwefBpMJtwiH2-aLgWHJWqELOKjyoXQ0rRt2Yf8y_xyzAwP4zMyMhkRubIyEA2idGUsrj_8PEv-h_XN-H1Z_M</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Loizou, Antonis</creator><creator>Christmas, Jacqueline</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-8447-4120</orcidid></search><sort><creationdate>20210701</creationdate><title>Sea State Estimation from Uncalibrated, Monoscopic Video</title><author>Loizou, Antonis ; Christmas, Jacqueline</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2080-97fa40ad726e8f60401b37e3987c5c440737bbc4fc517c1d11acad07dfe04343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Amplitudes</topic><topic>Approximation</topic><topic>Bathymetry</topic><topic>Cameras</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>Energy</topic><topic>Fourier transforms</topic><topic>Information Systems and Communication Service</topic><topic>Kalman filters</topic><topic>Maximum likelihood method</topic><topic>Ocean surface</topic><topic>Original Research</topic><topic>Pattern Recognition and Graphics</topic><topic>Sea states</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>State estimation</topic><topic>Time series</topic><topic>Video data</topic><topic>Vision</topic><topic>Wave height</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loizou, Antonis</creatorcontrib><creatorcontrib>Christmas, Jacqueline</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SN computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loizou, Antonis</au><au>Christmas, Jacqueline</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sea State Estimation from Uncalibrated, Monoscopic Video</atitle><jtitle>SN computer science</jtitle><stitle>SN COMPUT. SCI</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>2</volume><issue>4</issue><spage>328</spage><pages>328-</pages><artnum>328</artnum><issn>2662-995X</issn><eissn>2661-8907</eissn><abstract>Video of the ocean surface is used as a means for estimating the sea state. Time series of pixel intensity values are given as input to a method that uses the Kalman filter and the least squares approximate solution for estimating the uncalibrated video amplitude spectrum. A method is proposed for scaling this spectrum to metres with the use of an empirical model of the ocean. The significant wave height is estimated from the calibrated video amplitude spectrum. The results are tested against two sets of video data, and buoy measurements in both cases are solely used for indicating the true state. For significant wave height values between 0.5 and 3.6 m, the maximum observed value of root mean square error is 0.37 m and of mean absolute percentage error 16%.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s42979-021-00727-0</doi><orcidid>https://orcid.org/0000-0001-8447-4120</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2662-995X
ispartof SN computer science, 2021-07, Vol.2 (4), p.328, Article 328
issn 2662-995X
2661-8907
language eng
recordid cdi_proquest_journals_2932788677
source SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algorithms
Amplitudes
Approximation
Bathymetry
Cameras
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Energy
Fourier transforms
Information Systems and Communication Service
Kalman filters
Maximum likelihood method
Ocean surface
Original Research
Pattern Recognition and Graphics
Sea states
Software Engineering/Programming and Operating Systems
State estimation
Time series
Video data
Vision
Wave height
title Sea State Estimation from Uncalibrated, Monoscopic Video
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sea%20State%20Estimation%20from%20Uncalibrated,%20Monoscopic%20Video&rft.jtitle=SN%20computer%20science&rft.au=Loizou,%20Antonis&rft.date=2021-07-01&rft.volume=2&rft.issue=4&rft.spage=328&rft.pages=328-&rft.artnum=328&rft.issn=2662-995X&rft.eissn=2661-8907&rft_id=info:doi/10.1007/s42979-021-00727-0&rft_dat=%3Cproquest_cross%3E2932788677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932788677&rft_id=info:pmid/&rfr_iscdi=true