Learning Accurate Integer Transformer Machine-Translation Models
We describe a method for training accurate Transformer machine-translation models to run inference using 8-bit integer (INT8) hardware matrix multipliers, as opposed to the more costly single-precision floating-point (FP32) hardware. Unlike previous work, which converted only 85 Transformer matrix m...
Gespeichert in:
Veröffentlicht in: | SN computer science 2021-07, Vol.2 (4), p.291, Article 291 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 291 |
container_title | SN computer science |
container_volume | 2 |
creator | Wu, Ephrem |
description | We describe a method for training accurate Transformer machine-translation models to run inference using 8-bit integer (INT8) hardware matrix multipliers, as opposed to the more costly single-precision floating-point (FP32) hardware. Unlike previous work, which converted only 85 Transformer matrix multiplications to INT8, leaving 48 out of 133 of them in FP32 because of unacceptable accuracy loss, we convert them
all
to INT8 without compromising accuracy. Tested on the
newstest2014
English-to-German translation task, our INT8 Transformer Base and Transformer Big models yield BLEU scores that are 99.3–100% relative to those of the corresponding FP32 models. Our approach converts all matrix-multiplication tensors from an existing FP32 model into INT8 tensors by automatically making range-precision trade-offs during training. To demonstrate the robustness of this approach, we also include results from INT6 Transformer models. |
doi_str_mv | 10.1007/s42979-021-00688-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932788319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932788319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2344-bf21287e20e957e4d8381bcc39aee3c5213624d17c74b0acfb0106b119132d0d3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWLRfwNOC5-hkkt0kN0vxT6HFSwVvIZvN1i1ttibbg9_e2BW8eZrH8N4b5kfIDYM7BiDvk0AtNQVkFKBSioozMsGqYlRpkOcnjVTr8v2STFPaAgCWIERVTsjD0tsYurApZs4dox18sQiD3_hYrKMNqe3jPuuVdR9d8PS029mh60Ox6hu_S9fkorW75Ke_84q8PT2u5y90-fq8mM-W1CEXgtYtMlTSI3hdSi8axRWrnePaes9diYxXKBomnRQ1WNfWwKCqGdOMYwMNvyK3Y-8h9p9Hnwaz7Y8x5JMGNUepFGc6u3B0udinFH1rDrHb2_hlGJgfWGaEZTIsc4JlRA7xMZSyOeTX_6r_SX0DvexrgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932788319</pqid></control><display><type>article</type><title>Learning Accurate Integer Transformer Machine-Translation Models</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Wu, Ephrem</creator><creatorcontrib>Wu, Ephrem</creatorcontrib><description>We describe a method for training accurate Transformer machine-translation models to run inference using 8-bit integer (INT8) hardware matrix multipliers, as opposed to the more costly single-precision floating-point (FP32) hardware. Unlike previous work, which converted only 85 Transformer matrix multiplications to INT8, leaving 48 out of 133 of them in FP32 because of unacceptable accuracy loss, we convert them
all
to INT8 without compromising accuracy. Tested on the
newstest2014
English-to-German translation task, our INT8 Transformer Base and Transformer Big models yield BLEU scores that are 99.3–100% relative to those of the corresponding FP32 models. Our approach converts all matrix-multiplication tensors from an existing FP32 model into INT8 tensors by automatically making range-precision trade-offs during training. To demonstrate the robustness of this approach, we also include results from INT6 Transformer models.</description><identifier>ISSN: 2662-995X</identifier><identifier>EISSN: 2661-8907</identifier><identifier>DOI: 10.1007/s42979-021-00688-4</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Accuracy ; Computer Imaging ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Information Theory ; Floating point arithmetic ; Hardware ; Information Systems and Communication Service ; Integers ; Machine translation ; Mathematical analysis ; Numbers ; Original Research ; Pattern Recognition and Graphics ; Software Engineering/Programming and Operating Systems ; Tensors ; Training ; Transformers ; Vision</subject><ispartof>SN computer science, 2021-07, Vol.2 (4), p.291, Article 291</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2344-bf21287e20e957e4d8381bcc39aee3c5213624d17c74b0acfb0106b119132d0d3</citedby><cites>FETCH-LOGICAL-c2344-bf21287e20e957e4d8381bcc39aee3c5213624d17c74b0acfb0106b119132d0d3</cites><orcidid>0000-0002-9131-2813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42979-021-00688-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2932788319?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72340</link.rule.ids></links><search><creatorcontrib>Wu, Ephrem</creatorcontrib><title>Learning Accurate Integer Transformer Machine-Translation Models</title><title>SN computer science</title><addtitle>SN COMPUT. SCI</addtitle><description>We describe a method for training accurate Transformer machine-translation models to run inference using 8-bit integer (INT8) hardware matrix multipliers, as opposed to the more costly single-precision floating-point (FP32) hardware. Unlike previous work, which converted only 85 Transformer matrix multiplications to INT8, leaving 48 out of 133 of them in FP32 because of unacceptable accuracy loss, we convert them
all
to INT8 without compromising accuracy. Tested on the
newstest2014
English-to-German translation task, our INT8 Transformer Base and Transformer Big models yield BLEU scores that are 99.3–100% relative to those of the corresponding FP32 models. Our approach converts all matrix-multiplication tensors from an existing FP32 model into INT8 tensors by automatically making range-precision trade-offs during training. To demonstrate the robustness of this approach, we also include results from INT6 Transformer models.</description><subject>Accuracy</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>Floating point arithmetic</subject><subject>Hardware</subject><subject>Information Systems and Communication Service</subject><subject>Integers</subject><subject>Machine translation</subject><subject>Mathematical analysis</subject><subject>Numbers</subject><subject>Original Research</subject><subject>Pattern Recognition and Graphics</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Tensors</subject><subject>Training</subject><subject>Transformers</subject><subject>Vision</subject><issn>2662-995X</issn><issn>2661-8907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEQxYMoWLRfwNOC5-hkkt0kN0vxT6HFSwVvIZvN1i1ttibbg9_e2BW8eZrH8N4b5kfIDYM7BiDvk0AtNQVkFKBSioozMsGqYlRpkOcnjVTr8v2STFPaAgCWIERVTsjD0tsYurApZs4dox18sQiD3_hYrKMNqe3jPuuVdR9d8PS029mh60Ox6hu_S9fkorW75Ke_84q8PT2u5y90-fq8mM-W1CEXgtYtMlTSI3hdSi8axRWrnePaes9diYxXKBomnRQ1WNfWwKCqGdOMYwMNvyK3Y-8h9p9Hnwaz7Y8x5JMGNUepFGc6u3B0udinFH1rDrHb2_hlGJgfWGaEZTIsc4JlRA7xMZSyOeTX_6r_SX0DvexrgA</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Wu, Ephrem</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-9131-2813</orcidid></search><sort><creationdate>20210701</creationdate><title>Learning Accurate Integer Transformer Machine-Translation Models</title><author>Wu, Ephrem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2344-bf21287e20e957e4d8381bcc39aee3c5213624d17c74b0acfb0106b119132d0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>Floating point arithmetic</topic><topic>Hardware</topic><topic>Information Systems and Communication Service</topic><topic>Integers</topic><topic>Machine translation</topic><topic>Mathematical analysis</topic><topic>Numbers</topic><topic>Original Research</topic><topic>Pattern Recognition and Graphics</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Tensors</topic><topic>Training</topic><topic>Transformers</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Ephrem</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SN computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Ephrem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Accurate Integer Transformer Machine-Translation Models</atitle><jtitle>SN computer science</jtitle><stitle>SN COMPUT. SCI</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>2</volume><issue>4</issue><spage>291</spage><pages>291-</pages><artnum>291</artnum><issn>2662-995X</issn><eissn>2661-8907</eissn><abstract>We describe a method for training accurate Transformer machine-translation models to run inference using 8-bit integer (INT8) hardware matrix multipliers, as opposed to the more costly single-precision floating-point (FP32) hardware. Unlike previous work, which converted only 85 Transformer matrix multiplications to INT8, leaving 48 out of 133 of them in FP32 because of unacceptable accuracy loss, we convert them
all
to INT8 without compromising accuracy. Tested on the
newstest2014
English-to-German translation task, our INT8 Transformer Base and Transformer Big models yield BLEU scores that are 99.3–100% relative to those of the corresponding FP32 models. Our approach converts all matrix-multiplication tensors from an existing FP32 model into INT8 tensors by automatically making range-precision trade-offs during training. To demonstrate the robustness of this approach, we also include results from INT6 Transformer models.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s42979-021-00688-4</doi><orcidid>https://orcid.org/0000-0002-9131-2813</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2662-995X |
ispartof | SN computer science, 2021-07, Vol.2 (4), p.291, Article 291 |
issn | 2662-995X 2661-8907 |
language | eng |
recordid | cdi_proquest_journals_2932788319 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Accuracy Computer Imaging Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Floating point arithmetic Hardware Information Systems and Communication Service Integers Machine translation Mathematical analysis Numbers Original Research Pattern Recognition and Graphics Software Engineering/Programming and Operating Systems Tensors Training Transformers Vision |
title | Learning Accurate Integer Transformer Machine-Translation Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A39%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Accurate%20Integer%20Transformer%20Machine-Translation%20Models&rft.jtitle=SN%20computer%20science&rft.au=Wu,%20Ephrem&rft.date=2021-07-01&rft.volume=2&rft.issue=4&rft.spage=291&rft.pages=291-&rft.artnum=291&rft.issn=2662-995X&rft.eissn=2661-8907&rft_id=info:doi/10.1007/s42979-021-00688-4&rft_dat=%3Cproquest_cross%3E2932788319%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932788319&rft_id=info:pmid/&rfr_iscdi=true |