Ornament Image Retrieval Using Multimodal Fusion

Search-by-example, i.e. finding images that are similar to a query image, is an indispensable function for various modern image search engines. The applications of such systems are manifold. The primary application of search-by-example is in recommending fashion materials based on user interests. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN computer science 2021-07, Vol.2 (4), p.336, Article 336
Hauptverfasser: Islam, Sk Maidul, Joardar, Subhankar, Dogra, Debi Prosad, Sekh, Arif Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 336
container_title SN computer science
container_volume 2
creator Islam, Sk Maidul
Joardar, Subhankar
Dogra, Debi Prosad
Sekh, Arif Ahmed
description Search-by-example, i.e. finding images that are similar to a query image, is an indispensable function for various modern image search engines. The applications of such systems are manifold. The primary application of search-by-example is in recommending fashion materials based on user interests. There are various challenges in this area of research such as a large volume of the product database, similar visual appearances, and a large variety of products. The problem becomes more difficult to solve when the product is complex in design such as ornaments. In this paper, we have proposed a fusion-based retrieval model. The method uses weighted average of multiple similarity measures. We have used four different methods namely hash-based, histogram-based, deep feature comparison, and feature cross correlation to find the similarity. A dataset of ornaments (golden earrings) has been prepared and made available to the research community. We achieve 81% top-1 and 89% top-5 accuracy using the proposed method. The dataset and the code is available publicly in https://github.com/skarifahmed/RingFIR .
doi_str_mv 10.1007/s42979-021-00734-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932788303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932788303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1641-69de8f32bae1741d1a202048a6a2971ce69ba0e89ae7295ac5d956d1835654433</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGr_gKsB19F785pkKcVqoVIQC-5COpOWKfOoyYzgvzftCO5c3QfnHA4fIbcI9wiQP0TBTG4oMKTp5ILiBZkwpZBqA_nleWfUGPlxTWYxHgCASRBCyQmBdWhd49s-WzZu77M334fKf7k628Sq3WevQ91XTVemx2KIVdfekKudq6Of_c4p2Sye3ucvdLV-Xs4fV7RAJZAqU3q942zrPOYCS3QMGAjtlEtlsfDKbB14bZzPmZGukKWRqkTNpZJCcD4ld2PuMXSfg4-9PXRD6lpHywxnudYcTio2qorQxRj8zh5D1bjwbRHsCY4d4dgEx57hWEwmPppiErd7H_6i_3H9AFaIZOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932788303</pqid></control><display><type>article</type><title>Ornament Image Retrieval Using Multimodal Fusion</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Islam, Sk Maidul ; Joardar, Subhankar ; Dogra, Debi Prosad ; Sekh, Arif Ahmed</creator><creatorcontrib>Islam, Sk Maidul ; Joardar, Subhankar ; Dogra, Debi Prosad ; Sekh, Arif Ahmed</creatorcontrib><description>Search-by-example, i.e. finding images that are similar to a query image, is an indispensable function for various modern image search engines. The applications of such systems are manifold. The primary application of search-by-example is in recommending fashion materials based on user interests. There are various challenges in this area of research such as a large volume of the product database, similar visual appearances, and a large variety of products. The problem becomes more difficult to solve when the product is complex in design such as ornaments. In this paper, we have proposed a fusion-based retrieval model. The method uses weighted average of multiple similarity measures. We have used four different methods namely hash-based, histogram-based, deep feature comparison, and feature cross correlation to find the similarity. A dataset of ornaments (golden earrings) has been prepared and made available to the research community. We achieve 81% top-1 and 89% top-5 accuracy using the proposed method. The dataset and the code is available publicly in https://github.com/skarifahmed/RingFIR .</description><identifier>ISSN: 2662-995X</identifier><identifier>EISSN: 2661-8907</identifier><identifier>DOI: 10.1007/s42979-021-00734-1</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Artificial intelligence ; Computer Imaging ; Computer Science ; Computer Systems Organization and Communication Networks ; Cross correlation ; Data Structures and Information Theory ; Datasets ; Deep learning ; Fashion ; Histograms ; Image retrieval ; Information Systems and Communication Service ; Neural networks ; Original Research ; Pattern Recognition and Graphics ; Popularity ; Recommender systems ; Retrieval ; Search engines ; Semantics ; Similarity ; Software Engineering/Programming and Operating Systems ; Vision</subject><ispartof>SN computer science, 2021-07, Vol.2 (4), p.336, Article 336</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1641-69de8f32bae1741d1a202048a6a2971ce69ba0e89ae7295ac5d956d1835654433</citedby><cites>FETCH-LOGICAL-c1641-69de8f32bae1741d1a202048a6a2971ce69ba0e89ae7295ac5d956d1835654433</cites><orcidid>0000-0003-2470-1269</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42979-021-00734-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2932788303?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Islam, Sk Maidul</creatorcontrib><creatorcontrib>Joardar, Subhankar</creatorcontrib><creatorcontrib>Dogra, Debi Prosad</creatorcontrib><creatorcontrib>Sekh, Arif Ahmed</creatorcontrib><title>Ornament Image Retrieval Using Multimodal Fusion</title><title>SN computer science</title><addtitle>SN COMPUT. SCI</addtitle><description>Search-by-example, i.e. finding images that are similar to a query image, is an indispensable function for various modern image search engines. The applications of such systems are manifold. The primary application of search-by-example is in recommending fashion materials based on user interests. There are various challenges in this area of research such as a large volume of the product database, similar visual appearances, and a large variety of products. The problem becomes more difficult to solve when the product is complex in design such as ornaments. In this paper, we have proposed a fusion-based retrieval model. The method uses weighted average of multiple similarity measures. We have used four different methods namely hash-based, histogram-based, deep feature comparison, and feature cross correlation to find the similarity. A dataset of ornaments (golden earrings) has been prepared and made available to the research community. We achieve 81% top-1 and 89% top-5 accuracy using the proposed method. The dataset and the code is available publicly in https://github.com/skarifahmed/RingFIR .</description><subject>Artificial intelligence</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Cross correlation</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Fashion</subject><subject>Histograms</subject><subject>Image retrieval</subject><subject>Information Systems and Communication Service</subject><subject>Neural networks</subject><subject>Original Research</subject><subject>Pattern Recognition and Graphics</subject><subject>Popularity</subject><subject>Recommender systems</subject><subject>Retrieval</subject><subject>Search engines</subject><subject>Semantics</subject><subject>Similarity</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Vision</subject><issn>2662-995X</issn><issn>2661-8907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEUhYMoWGr_gKsB19F785pkKcVqoVIQC-5COpOWKfOoyYzgvzftCO5c3QfnHA4fIbcI9wiQP0TBTG4oMKTp5ILiBZkwpZBqA_nleWfUGPlxTWYxHgCASRBCyQmBdWhd49s-WzZu77M334fKf7k628Sq3WevQ91XTVemx2KIVdfekKudq6Of_c4p2Sye3ucvdLV-Xs4fV7RAJZAqU3q942zrPOYCS3QMGAjtlEtlsfDKbB14bZzPmZGukKWRqkTNpZJCcD4ld2PuMXSfg4-9PXRD6lpHywxnudYcTio2qorQxRj8zh5D1bjwbRHsCY4d4dgEx57hWEwmPppiErd7H_6i_3H9AFaIZOY</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Islam, Sk Maidul</creator><creator>Joardar, Subhankar</creator><creator>Dogra, Debi Prosad</creator><creator>Sekh, Arif Ahmed</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-2470-1269</orcidid></search><sort><creationdate>20210701</creationdate><title>Ornament Image Retrieval Using Multimodal Fusion</title><author>Islam, Sk Maidul ; Joardar, Subhankar ; Dogra, Debi Prosad ; Sekh, Arif Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1641-69de8f32bae1741d1a202048a6a2971ce69ba0e89ae7295ac5d956d1835654433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Cross correlation</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Fashion</topic><topic>Histograms</topic><topic>Image retrieval</topic><topic>Information Systems and Communication Service</topic><topic>Neural networks</topic><topic>Original Research</topic><topic>Pattern Recognition and Graphics</topic><topic>Popularity</topic><topic>Recommender systems</topic><topic>Retrieval</topic><topic>Search engines</topic><topic>Semantics</topic><topic>Similarity</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Islam, Sk Maidul</creatorcontrib><creatorcontrib>Joardar, Subhankar</creatorcontrib><creatorcontrib>Dogra, Debi Prosad</creatorcontrib><creatorcontrib>Sekh, Arif Ahmed</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SN computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Islam, Sk Maidul</au><au>Joardar, Subhankar</au><au>Dogra, Debi Prosad</au><au>Sekh, Arif Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ornament Image Retrieval Using Multimodal Fusion</atitle><jtitle>SN computer science</jtitle><stitle>SN COMPUT. SCI</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>2</volume><issue>4</issue><spage>336</spage><pages>336-</pages><artnum>336</artnum><issn>2662-995X</issn><eissn>2661-8907</eissn><abstract>Search-by-example, i.e. finding images that are similar to a query image, is an indispensable function for various modern image search engines. The applications of such systems are manifold. The primary application of search-by-example is in recommending fashion materials based on user interests. There are various challenges in this area of research such as a large volume of the product database, similar visual appearances, and a large variety of products. The problem becomes more difficult to solve when the product is complex in design such as ornaments. In this paper, we have proposed a fusion-based retrieval model. The method uses weighted average of multiple similarity measures. We have used four different methods namely hash-based, histogram-based, deep feature comparison, and feature cross correlation to find the similarity. A dataset of ornaments (golden earrings) has been prepared and made available to the research community. We achieve 81% top-1 and 89% top-5 accuracy using the proposed method. The dataset and the code is available publicly in https://github.com/skarifahmed/RingFIR .</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s42979-021-00734-1</doi><orcidid>https://orcid.org/0000-0003-2470-1269</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2662-995X
ispartof SN computer science, 2021-07, Vol.2 (4), p.336, Article 336
issn 2662-995X
2661-8907
language eng
recordid cdi_proquest_journals_2932788303
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Artificial intelligence
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Cross correlation
Data Structures and Information Theory
Datasets
Deep learning
Fashion
Histograms
Image retrieval
Information Systems and Communication Service
Neural networks
Original Research
Pattern Recognition and Graphics
Popularity
Recommender systems
Retrieval
Search engines
Semantics
Similarity
Software Engineering/Programming and Operating Systems
Vision
title Ornament Image Retrieval Using Multimodal Fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ornament%20Image%20Retrieval%20Using%20Multimodal%20Fusion&rft.jtitle=SN%20computer%20science&rft.au=Islam,%20Sk%20Maidul&rft.date=2021-07-01&rft.volume=2&rft.issue=4&rft.spage=336&rft.pages=336-&rft.artnum=336&rft.issn=2662-995X&rft.eissn=2661-8907&rft_id=info:doi/10.1007/s42979-021-00734-1&rft_dat=%3Cproquest_cross%3E2932788303%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932788303&rft_id=info:pmid/&rfr_iscdi=true