ANN-aided stiffness characterization of thin membranes using droplet motion
This paper presents a novel approach for the stiffness characterization of thin membranes using the characteristics of droplet motion over it. The droplet motion over an inclined free-hanging thin compliant membrane is investigated with the help of a numerical model. The effect of substrate complian...
Gespeichert in:
Veröffentlicht in: | Acta mechanica 2024-02, Vol.235 (2), p.565-582 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 582 |
---|---|
container_issue | 2 |
container_start_page | 565 |
container_title | Acta mechanica |
container_volume | 235 |
creator | Rohit Haider, Syed Ahsan Raj, Abhishek |
description | This paper presents a novel approach for the stiffness characterization of thin membranes using the characteristics of droplet motion over it. The droplet motion over an inclined free-hanging thin compliant membrane is investigated with the help of a numerical model. The effect of substrate compliance over droplet displacement has been studied. Further, the wall deformation of the substrate with the droplet motion has also been investigated. The numerical study has highlighted that the distance moved by a droplet over a membrane reduces with a reduction in the flexural rigidity of the membrane. Also, the dependency of motion of droplets with contact angle hysteresis (CAH) is presented. It is observed that the CAH increases with a decrease in the flexural rigidity of the membrane. These characteristics of the droplet motion over inclined free-hanging thin compliant membrane have been utilized to predict Young's modulus of polydimethylsiloxane (PDMS) membranes using a novel artificial neural network (ANN) model. The ANN model is developed for the same purpose. The input parameters for the ANN model are the droplet's displacement over a fixed time interval (
x
), the PDMS membrane's maximum deflection (
▵
Y
), the angle of inclination (
θ
), the thickness of the membrane (
t
), and the droplet's volume (
V
). The output parameter of the ANN is Young’s modulus of the PDMS membrane. The developed ANN network was found to have good accuracy (
R
overall
=
0.99995
)
in predicting Young's modulus of the PDMS membrane. The proposed approach is a simple, low-cost method for the prediction of Young’s modulus of PDMS membranes. |
doi_str_mv | 10.1007/s00707-023-03755-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932782755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932782755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4521b50360aa646e766498a8eb1af33e9a48127c10075a58db2015dab40302183</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTaM38myqniJqmxgbTmJ07pqkmI7C_h6XILEjs2MRjr3zsxF6JrCLQXQdzEX0AQYJ8C1lEScoBlVtCSq5PoUzQCAEllqOEcXMe7yxLSgM_SyWK-J9Y1rcEy-bXsXI663Ntg6ueC_bPJDj4cWp63vcee6KtjM4DH6foObMBz2LuFuOGKX6Ky1--iufvscvT_cvy2fyOr18Xm5WJGa0zIRIRmtJHAF1iqhnFZKlIUtXEVty7krrSjydfXxMWll0VQMqGxsJYADowWfo5vJ9xCGj9HFZHbDGPq80rCSM12wnECm2ETVYYgxuNYcgu9s-DQUzNHbTKGZHJr5Cc2ILOKTKGa437jwZ_2P6hvXD24g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932782755</pqid></control><display><type>article</type><title>ANN-aided stiffness characterization of thin membranes using droplet motion</title><source>SpringerLink Journals</source><creator>Rohit ; Haider, Syed Ahsan ; Raj, Abhishek</creator><creatorcontrib>Rohit ; Haider, Syed Ahsan ; Raj, Abhishek</creatorcontrib><description>This paper presents a novel approach for the stiffness characterization of thin membranes using the characteristics of droplet motion over it. The droplet motion over an inclined free-hanging thin compliant membrane is investigated with the help of a numerical model. The effect of substrate compliance over droplet displacement has been studied. Further, the wall deformation of the substrate with the droplet motion has also been investigated. The numerical study has highlighted that the distance moved by a droplet over a membrane reduces with a reduction in the flexural rigidity of the membrane. Also, the dependency of motion of droplets with contact angle hysteresis (CAH) is presented. It is observed that the CAH increases with a decrease in the flexural rigidity of the membrane. These characteristics of the droplet motion over inclined free-hanging thin compliant membrane have been utilized to predict Young's modulus of polydimethylsiloxane (PDMS) membranes using a novel artificial neural network (ANN) model. The ANN model is developed for the same purpose. The input parameters for the ANN model are the droplet's displacement over a fixed time interval (
x
), the PDMS membrane's maximum deflection (
▵
Y
), the angle of inclination (
θ
), the thickness of the membrane (
t
), and the droplet's volume (
V
). The output parameter of the ANN is Young’s modulus of the PDMS membrane. The developed ANN network was found to have good accuracy (
R
overall
=
0.99995
)
in predicting Young's modulus of the PDMS membrane. The proposed approach is a simple, low-cost method for the prediction of Young’s modulus of PDMS membranes.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-023-03755-4</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Artificial neural networks ; Classical and Continuum Physics ; Contact angle ; Control ; Droplets ; Dynamical Systems ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Heat and Mass Transfer ; Inclination angle ; Mathematical models ; Membranes ; Modulus of elasticity ; Numerical models ; Original Paper ; Parameters ; Polydimethylsiloxane ; Rigidity ; Solid Mechanics ; Stiffness ; Substrates ; Theoretical and Applied Mechanics ; Vibration</subject><ispartof>Acta mechanica, 2024-02, Vol.235 (2), p.565-582</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. corrected publication 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4521b50360aa646e766498a8eb1af33e9a48127c10075a58db2015dab40302183</citedby><cites>FETCH-LOGICAL-c319t-4521b50360aa646e766498a8eb1af33e9a48127c10075a58db2015dab40302183</cites><orcidid>0000-0002-2779-8345</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-023-03755-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-023-03755-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rohit</creatorcontrib><creatorcontrib>Haider, Syed Ahsan</creatorcontrib><creatorcontrib>Raj, Abhishek</creatorcontrib><title>ANN-aided stiffness characterization of thin membranes using droplet motion</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>This paper presents a novel approach for the stiffness characterization of thin membranes using the characteristics of droplet motion over it. The droplet motion over an inclined free-hanging thin compliant membrane is investigated with the help of a numerical model. The effect of substrate compliance over droplet displacement has been studied. Further, the wall deformation of the substrate with the droplet motion has also been investigated. The numerical study has highlighted that the distance moved by a droplet over a membrane reduces with a reduction in the flexural rigidity of the membrane. Also, the dependency of motion of droplets with contact angle hysteresis (CAH) is presented. It is observed that the CAH increases with a decrease in the flexural rigidity of the membrane. These characteristics of the droplet motion over inclined free-hanging thin compliant membrane have been utilized to predict Young's modulus of polydimethylsiloxane (PDMS) membranes using a novel artificial neural network (ANN) model. The ANN model is developed for the same purpose. The input parameters for the ANN model are the droplet's displacement over a fixed time interval (
x
), the PDMS membrane's maximum deflection (
▵
Y
), the angle of inclination (
θ
), the thickness of the membrane (
t
), and the droplet's volume (
V
). The output parameter of the ANN is Young’s modulus of the PDMS membrane. The developed ANN network was found to have good accuracy (
R
overall
=
0.99995
)
in predicting Young's modulus of the PDMS membrane. The proposed approach is a simple, low-cost method for the prediction of Young’s modulus of PDMS membranes.</description><subject>Artificial neural networks</subject><subject>Classical and Continuum Physics</subject><subject>Contact angle</subject><subject>Control</subject><subject>Droplets</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Inclination angle</subject><subject>Mathematical models</subject><subject>Membranes</subject><subject>Modulus of elasticity</subject><subject>Numerical models</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Polydimethylsiloxane</subject><subject>Rigidity</subject><subject>Solid Mechanics</subject><subject>Stiffness</subject><subject>Substrates</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTaM38myqniJqmxgbTmJ07pqkmI7C_h6XILEjs2MRjr3zsxF6JrCLQXQdzEX0AQYJ8C1lEScoBlVtCSq5PoUzQCAEllqOEcXMe7yxLSgM_SyWK-J9Y1rcEy-bXsXI663Ntg6ueC_bPJDj4cWp63vcee6KtjM4DH6foObMBz2LuFuOGKX6Ky1--iufvscvT_cvy2fyOr18Xm5WJGa0zIRIRmtJHAF1iqhnFZKlIUtXEVty7krrSjydfXxMWll0VQMqGxsJYADowWfo5vJ9xCGj9HFZHbDGPq80rCSM12wnECm2ETVYYgxuNYcgu9s-DQUzNHbTKGZHJr5Cc2ILOKTKGa437jwZ_2P6hvXD24g</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Rohit</creator><creator>Haider, Syed Ahsan</creator><creator>Raj, Abhishek</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-2779-8345</orcidid></search><sort><creationdate>20240201</creationdate><title>ANN-aided stiffness characterization of thin membranes using droplet motion</title><author>Rohit ; Haider, Syed Ahsan ; Raj, Abhishek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4521b50360aa646e766498a8eb1af33e9a48127c10075a58db2015dab40302183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Classical and Continuum Physics</topic><topic>Contact angle</topic><topic>Control</topic><topic>Droplets</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Inclination angle</topic><topic>Mathematical models</topic><topic>Membranes</topic><topic>Modulus of elasticity</topic><topic>Numerical models</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Polydimethylsiloxane</topic><topic>Rigidity</topic><topic>Solid Mechanics</topic><topic>Stiffness</topic><topic>Substrates</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rohit</creatorcontrib><creatorcontrib>Haider, Syed Ahsan</creatorcontrib><creatorcontrib>Raj, Abhishek</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rohit</au><au>Haider, Syed Ahsan</au><au>Raj, Abhishek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ANN-aided stiffness characterization of thin membranes using droplet motion</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>235</volume><issue>2</issue><spage>565</spage><epage>582</epage><pages>565-582</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>This paper presents a novel approach for the stiffness characterization of thin membranes using the characteristics of droplet motion over it. The droplet motion over an inclined free-hanging thin compliant membrane is investigated with the help of a numerical model. The effect of substrate compliance over droplet displacement has been studied. Further, the wall deformation of the substrate with the droplet motion has also been investigated. The numerical study has highlighted that the distance moved by a droplet over a membrane reduces with a reduction in the flexural rigidity of the membrane. Also, the dependency of motion of droplets with contact angle hysteresis (CAH) is presented. It is observed that the CAH increases with a decrease in the flexural rigidity of the membrane. These characteristics of the droplet motion over inclined free-hanging thin compliant membrane have been utilized to predict Young's modulus of polydimethylsiloxane (PDMS) membranes using a novel artificial neural network (ANN) model. The ANN model is developed for the same purpose. The input parameters for the ANN model are the droplet's displacement over a fixed time interval (
x
), the PDMS membrane's maximum deflection (
▵
Y
), the angle of inclination (
θ
), the thickness of the membrane (
t
), and the droplet's volume (
V
). The output parameter of the ANN is Young’s modulus of the PDMS membrane. The developed ANN network was found to have good accuracy (
R
overall
=
0.99995
)
in predicting Young's modulus of the PDMS membrane. The proposed approach is a simple, low-cost method for the prediction of Young’s modulus of PDMS membranes.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-023-03755-4</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2779-8345</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-5970 |
ispartof | Acta mechanica, 2024-02, Vol.235 (2), p.565-582 |
issn | 0001-5970 1619-6937 |
language | eng |
recordid | cdi_proquest_journals_2932782755 |
source | SpringerLink Journals |
subjects | Artificial neural networks Classical and Continuum Physics Contact angle Control Droplets Dynamical Systems Engineering Engineering Fluid Dynamics Engineering Thermodynamics Heat and Mass Transfer Inclination angle Mathematical models Membranes Modulus of elasticity Numerical models Original Paper Parameters Polydimethylsiloxane Rigidity Solid Mechanics Stiffness Substrates Theoretical and Applied Mechanics Vibration |
title | ANN-aided stiffness characterization of thin membranes using droplet motion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A31%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ANN-aided%20stiffness%20characterization%20of%20thin%20membranes%20using%20droplet%20motion&rft.jtitle=Acta%20mechanica&rft.au=Rohit&rft.date=2024-02-01&rft.volume=235&rft.issue=2&rft.spage=565&rft.epage=582&rft.pages=565-582&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-023-03755-4&rft_dat=%3Cproquest_cross%3E2932782755%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932782755&rft_id=info:pmid/&rfr_iscdi=true |