Fuzzy Model Applied in Risk Perception and Price Forecasts

This study applies a fuzzy model to simulate an evolution of price forecasts among market investors based on their own risk perception and other multiple criteria decision. According to this imitation, we design a capital market laboratory experiment on the basis of Smith et al. (Econometrica 56:111...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fuzzy systems 2019-09, Vol.21 (6), p.1906-1918
Hauptverfasser: Yang, Que, Wang, Zongrun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1918
container_issue 6
container_start_page 1906
container_title International journal of fuzzy systems
container_volume 21
creator Yang, Que
Wang, Zongrun
description This study applies a fuzzy model to simulate an evolution of price forecasts among market investors based on their own risk perception and other multiple criteria decision. According to this imitation, we design a capital market laboratory experiment on the basis of Smith et al. (Econometrica 56:1119–1151, 1988 ). The experiment sets two groups of experiments to test the investor’s market behaviour under the influence of risk perception. The results show that there is no significant difference in changing prices under the influence of perceived systemic risks and non-systemic risks. However, when market returns become more uncertain, investors’ perceptions of risk significantly affect their trading behaviour. Furthermore, we divide the investors’ investment behaviour into different investment strategies and observe the trading behaviours of the investors with risk perception. In addition, extended analysis shows that under a risk environment, a decline in asset price is related to the amount of cash and assets held by the investors, and the assets purchased in the previous period has no substantial relationship with the asset price in the last period and the forecast accuracy of the investment asset price in the last period.
doi_str_mv 10.1007/s40815-019-00651-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932728197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932728197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-1d940f1b1e1acffa074e88199cdf8908b451f759d3ef6ad15905fe36ce4ef0fd3</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWGp_wFXAdTQvmWQm7kqxKlQsouuQJi8yWmfGZLpov97REdy5ept7z30cQs6BXwLn5VUueAWKcTCMc62AmSMyEWAMkwLgmExAacFEUZpTMsu53nAJQkul5YRcL3eHw54-tAG3dN512xoDrRv6VOd3usbksevrtqGuCXSdao902Sb0Lvf5jJxEt804-71T8rK8eV7csdXj7f1ivmJeatEzCKbgETaA4HyMjpcFVtXwnQ-xMrzaFApiqUyQGLULoAxXEaX2WGDkMcgpuRi5XWo_d5h7-9buUjNMWmGkKMUAK4eUGFM-tTknjLZL9YdLewvcfmuyoyY7aLI_mqwZSnIs5SHcvGL6Q__T-gK8Omm_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932728197</pqid></control><display><type>article</type><title>Fuzzy Model Applied in Risk Perception and Price Forecasts</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Yang, Que ; Wang, Zongrun</creator><creatorcontrib>Yang, Que ; Wang, Zongrun</creatorcontrib><description>This study applies a fuzzy model to simulate an evolution of price forecasts among market investors based on their own risk perception and other multiple criteria decision. According to this imitation, we design a capital market laboratory experiment on the basis of Smith et al. (Econometrica 56:1119–1151, 1988 ). The experiment sets two groups of experiments to test the investor’s market behaviour under the influence of risk perception. The results show that there is no significant difference in changing prices under the influence of perceived systemic risks and non-systemic risks. However, when market returns become more uncertain, investors’ perceptions of risk significantly affect their trading behaviour. Furthermore, we divide the investors’ investment behaviour into different investment strategies and observe the trading behaviours of the investors with risk perception. In addition, extended analysis shows that under a risk environment, a decline in asset price is related to the amount of cash and assets held by the investors, and the assets purchased in the previous period has no substantial relationship with the asset price in the last period and the forecast accuracy of the investment asset price in the last period.</description><identifier>ISSN: 1562-2479</identifier><identifier>EISSN: 2199-3211</identifier><identifier>DOI: 10.1007/s40815-019-00651-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Behavior ; Capital markets ; Computational Intelligence ; Decision making ; Economic theory ; Engineering ; Experiments ; Information management ; Investment strategy ; Investors ; Laboratories ; Management Science ; Markov analysis ; Mathematical models ; Multiple criterion ; Operations Research ; Perception ; Portfolio investments ; Prices ; Research methodology ; Risk perception ; Variables</subject><ispartof>International journal of fuzzy systems, 2019-09, Vol.21 (6), p.1906-1918</ispartof><rights>Taiwan Fuzzy Systems Association 2019</rights><rights>Taiwan Fuzzy Systems Association 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-1d940f1b1e1acffa074e88199cdf8908b451f759d3ef6ad15905fe36ce4ef0fd3</citedby><cites>FETCH-LOGICAL-c362t-1d940f1b1e1acffa074e88199cdf8908b451f759d3ef6ad15905fe36ce4ef0fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40815-019-00651-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2932728197?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Yang, Que</creatorcontrib><creatorcontrib>Wang, Zongrun</creatorcontrib><title>Fuzzy Model Applied in Risk Perception and Price Forecasts</title><title>International journal of fuzzy systems</title><addtitle>Int. J. Fuzzy Syst</addtitle><description>This study applies a fuzzy model to simulate an evolution of price forecasts among market investors based on their own risk perception and other multiple criteria decision. According to this imitation, we design a capital market laboratory experiment on the basis of Smith et al. (Econometrica 56:1119–1151, 1988 ). The experiment sets two groups of experiments to test the investor’s market behaviour under the influence of risk perception. The results show that there is no significant difference in changing prices under the influence of perceived systemic risks and non-systemic risks. However, when market returns become more uncertain, investors’ perceptions of risk significantly affect their trading behaviour. Furthermore, we divide the investors’ investment behaviour into different investment strategies and observe the trading behaviours of the investors with risk perception. In addition, extended analysis shows that under a risk environment, a decline in asset price is related to the amount of cash and assets held by the investors, and the assets purchased in the previous period has no substantial relationship with the asset price in the last period and the forecast accuracy of the investment asset price in the last period.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Behavior</subject><subject>Capital markets</subject><subject>Computational Intelligence</subject><subject>Decision making</subject><subject>Economic theory</subject><subject>Engineering</subject><subject>Experiments</subject><subject>Information management</subject><subject>Investment strategy</subject><subject>Investors</subject><subject>Laboratories</subject><subject>Management Science</subject><subject>Markov analysis</subject><subject>Mathematical models</subject><subject>Multiple criterion</subject><subject>Operations Research</subject><subject>Perception</subject><subject>Portfolio investments</subject><subject>Prices</subject><subject>Research methodology</subject><subject>Risk perception</subject><subject>Variables</subject><issn>1562-2479</issn><issn>2199-3211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMFKAzEURYMoWGp_wFXAdTQvmWQm7kqxKlQsouuQJi8yWmfGZLpov97REdy5ept7z30cQs6BXwLn5VUueAWKcTCMc62AmSMyEWAMkwLgmExAacFEUZpTMsu53nAJQkul5YRcL3eHw54-tAG3dN512xoDrRv6VOd3usbksevrtqGuCXSdao902Sb0Lvf5jJxEt804-71T8rK8eV7csdXj7f1ivmJeatEzCKbgETaA4HyMjpcFVtXwnQ-xMrzaFApiqUyQGLULoAxXEaX2WGDkMcgpuRi5XWo_d5h7-9buUjNMWmGkKMUAK4eUGFM-tTknjLZL9YdLewvcfmuyoyY7aLI_mqwZSnIs5SHcvGL6Q__T-gK8Omm_</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Yang, Que</creator><creator>Wang, Zongrun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190901</creationdate><title>Fuzzy Model Applied in Risk Perception and Price Forecasts</title><author>Yang, Que ; Wang, Zongrun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-1d940f1b1e1acffa074e88199cdf8908b451f759d3ef6ad15905fe36ce4ef0fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Behavior</topic><topic>Capital markets</topic><topic>Computational Intelligence</topic><topic>Decision making</topic><topic>Economic theory</topic><topic>Engineering</topic><topic>Experiments</topic><topic>Information management</topic><topic>Investment strategy</topic><topic>Investors</topic><topic>Laboratories</topic><topic>Management Science</topic><topic>Markov analysis</topic><topic>Mathematical models</topic><topic>Multiple criterion</topic><topic>Operations Research</topic><topic>Perception</topic><topic>Portfolio investments</topic><topic>Prices</topic><topic>Research methodology</topic><topic>Risk perception</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Que</creatorcontrib><creatorcontrib>Wang, Zongrun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Que</au><au>Wang, Zongrun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy Model Applied in Risk Perception and Price Forecasts</atitle><jtitle>International journal of fuzzy systems</jtitle><stitle>Int. J. Fuzzy Syst</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>21</volume><issue>6</issue><spage>1906</spage><epage>1918</epage><pages>1906-1918</pages><issn>1562-2479</issn><eissn>2199-3211</eissn><abstract>This study applies a fuzzy model to simulate an evolution of price forecasts among market investors based on their own risk perception and other multiple criteria decision. According to this imitation, we design a capital market laboratory experiment on the basis of Smith et al. (Econometrica 56:1119–1151, 1988 ). The experiment sets two groups of experiments to test the investor’s market behaviour under the influence of risk perception. The results show that there is no significant difference in changing prices under the influence of perceived systemic risks and non-systemic risks. However, when market returns become more uncertain, investors’ perceptions of risk significantly affect their trading behaviour. Furthermore, we divide the investors’ investment behaviour into different investment strategies and observe the trading behaviours of the investors with risk perception. In addition, extended analysis shows that under a risk environment, a decline in asset price is related to the amount of cash and assets held by the investors, and the assets purchased in the previous period has no substantial relationship with the asset price in the last period and the forecast accuracy of the investment asset price in the last period.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40815-019-00651-9</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1562-2479
ispartof International journal of fuzzy systems, 2019-09, Vol.21 (6), p.1906-1918
issn 1562-2479
2199-3211
language eng
recordid cdi_proquest_journals_2932728197
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Artificial Intelligence
Behavior
Capital markets
Computational Intelligence
Decision making
Economic theory
Engineering
Experiments
Information management
Investment strategy
Investors
Laboratories
Management Science
Markov analysis
Mathematical models
Multiple criterion
Operations Research
Perception
Portfolio investments
Prices
Research methodology
Risk perception
Variables
title Fuzzy Model Applied in Risk Perception and Price Forecasts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A36%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20Model%20Applied%20in%20Risk%20Perception%20and%20Price%20Forecasts&rft.jtitle=International%20journal%20of%20fuzzy%20systems&rft.au=Yang,%20Que&rft.date=2019-09-01&rft.volume=21&rft.issue=6&rft.spage=1906&rft.epage=1918&rft.pages=1906-1918&rft.issn=1562-2479&rft.eissn=2199-3211&rft_id=info:doi/10.1007/s40815-019-00651-9&rft_dat=%3Cproquest_cross%3E2932728197%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932728197&rft_id=info:pmid/&rfr_iscdi=true