GEM3D: GEnerative Medial Abstractions for 3D Shape Synthesis
We introduce GEM3D -- a new deep, topology-aware generative model of 3D shapes. The key ingredient of our method is a neural skeleton-based representation encoding information on both shape topology and geometry. Through a denoising diffusion probabilistic model, our method first generates skeleton-...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Petrov, Dmitry Goyal, Pradyumn Thamizharasan, Vikas Kim, Vladimir G Gadelha, Matheus Averkiou, Melinos Chaudhuri, Siddhartha Kalogerakis, Evangelos |
description | We introduce GEM3D -- a new deep, topology-aware generative model of 3D shapes. The key ingredient of our method is a neural skeleton-based representation encoding information on both shape topology and geometry. Through a denoising diffusion probabilistic model, our method first generates skeleton-based representations following the Medial Axis Transform (MAT), then generates surfaces through a skeleton-driven neural implicit formulation. The neural implicit takes into account the topological and geometric information stored in the generated skeleton representations to yield surfaces that are more topologically and geometrically accurate compared to previous neural field formulations. We discuss applications of our method in shape synthesis and point cloud reconstruction tasks, and evaluate our method both qualitatively and quantitatively. We demonstrate significantly more faithful surface reconstruction and diverse shape generation results compared to the state-of-the-art, also involving challenging scenarios of reconstructing and synthesizing structurally complex, high-genus shape surfaces from Thingi10K and ShapeNet. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2932608742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932608742</sourcerecordid><originalsourceid>FETCH-proquest_journals_29326087423</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcXf1NXaxUnB3zUstSizJLEtV8E1NyUzMUXBMKi4pSkwuyczPK1ZIyy9SMHZRCM5ILEhVCK7MK8lILc4s5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNLYyMzAwtzEyNj4lQBAHGaNh0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932608742</pqid></control><display><type>article</type><title>GEM3D: GEnerative Medial Abstractions for 3D Shape Synthesis</title><source>Free E- Journals</source><creator>Petrov, Dmitry ; Goyal, Pradyumn ; Thamizharasan, Vikas ; Kim, Vladimir G ; Gadelha, Matheus ; Averkiou, Melinos ; Chaudhuri, Siddhartha ; Kalogerakis, Evangelos</creator><creatorcontrib>Petrov, Dmitry ; Goyal, Pradyumn ; Thamizharasan, Vikas ; Kim, Vladimir G ; Gadelha, Matheus ; Averkiou, Melinos ; Chaudhuri, Siddhartha ; Kalogerakis, Evangelos</creatorcontrib><description>We introduce GEM3D -- a new deep, topology-aware generative model of 3D shapes. The key ingredient of our method is a neural skeleton-based representation encoding information on both shape topology and geometry. Through a denoising diffusion probabilistic model, our method first generates skeleton-based representations following the Medial Axis Transform (MAT), then generates surfaces through a skeleton-driven neural implicit formulation. The neural implicit takes into account the topological and geometric information stored in the generated skeleton representations to yield surfaces that are more topologically and geometrically accurate compared to previous neural field formulations. We discuss applications of our method in shape synthesis and point cloud reconstruction tasks, and evaluate our method both qualitatively and quantitatively. We demonstrate significantly more faithful surface reconstruction and diverse shape generation results compared to the state-of-the-art, also involving challenging scenarios of reconstructing and synthesizing structurally complex, high-genus shape surfaces from Thingi10K and ShapeNet.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Image reconstruction ; Probabilistic models ; Representations ; Synthesis ; Three dimensional models ; Topology</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Petrov, Dmitry</creatorcontrib><creatorcontrib>Goyal, Pradyumn</creatorcontrib><creatorcontrib>Thamizharasan, Vikas</creatorcontrib><creatorcontrib>Kim, Vladimir G</creatorcontrib><creatorcontrib>Gadelha, Matheus</creatorcontrib><creatorcontrib>Averkiou, Melinos</creatorcontrib><creatorcontrib>Chaudhuri, Siddhartha</creatorcontrib><creatorcontrib>Kalogerakis, Evangelos</creatorcontrib><title>GEM3D: GEnerative Medial Abstractions for 3D Shape Synthesis</title><title>arXiv.org</title><description>We introduce GEM3D -- a new deep, topology-aware generative model of 3D shapes. The key ingredient of our method is a neural skeleton-based representation encoding information on both shape topology and geometry. Through a denoising diffusion probabilistic model, our method first generates skeleton-based representations following the Medial Axis Transform (MAT), then generates surfaces through a skeleton-driven neural implicit formulation. The neural implicit takes into account the topological and geometric information stored in the generated skeleton representations to yield surfaces that are more topologically and geometrically accurate compared to previous neural field formulations. We discuss applications of our method in shape synthesis and point cloud reconstruction tasks, and evaluate our method both qualitatively and quantitatively. We demonstrate significantly more faithful surface reconstruction and diverse shape generation results compared to the state-of-the-art, also involving challenging scenarios of reconstructing and synthesizing structurally complex, high-genus shape surfaces from Thingi10K and ShapeNet.</description><subject>Image reconstruction</subject><subject>Probabilistic models</subject><subject>Representations</subject><subject>Synthesis</subject><subject>Three dimensional models</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcXf1NXaxUnB3zUstSizJLEtV8E1NyUzMUXBMKi4pSkwuyczPK1ZIyy9SMHZRCM5ILEhVCK7MK8lILc4s5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNLYyMzAwtzEyNj4lQBAHGaNh0</recordid><startdate>20240411</startdate><enddate>20240411</enddate><creator>Petrov, Dmitry</creator><creator>Goyal, Pradyumn</creator><creator>Thamizharasan, Vikas</creator><creator>Kim, Vladimir G</creator><creator>Gadelha, Matheus</creator><creator>Averkiou, Melinos</creator><creator>Chaudhuri, Siddhartha</creator><creator>Kalogerakis, Evangelos</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240411</creationdate><title>GEM3D: GEnerative Medial Abstractions for 3D Shape Synthesis</title><author>Petrov, Dmitry ; Goyal, Pradyumn ; Thamizharasan, Vikas ; Kim, Vladimir G ; Gadelha, Matheus ; Averkiou, Melinos ; Chaudhuri, Siddhartha ; Kalogerakis, Evangelos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29326087423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Image reconstruction</topic><topic>Probabilistic models</topic><topic>Representations</topic><topic>Synthesis</topic><topic>Three dimensional models</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Petrov, Dmitry</creatorcontrib><creatorcontrib>Goyal, Pradyumn</creatorcontrib><creatorcontrib>Thamizharasan, Vikas</creatorcontrib><creatorcontrib>Kim, Vladimir G</creatorcontrib><creatorcontrib>Gadelha, Matheus</creatorcontrib><creatorcontrib>Averkiou, Melinos</creatorcontrib><creatorcontrib>Chaudhuri, Siddhartha</creatorcontrib><creatorcontrib>Kalogerakis, Evangelos</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrov, Dmitry</au><au>Goyal, Pradyumn</au><au>Thamizharasan, Vikas</au><au>Kim, Vladimir G</au><au>Gadelha, Matheus</au><au>Averkiou, Melinos</au><au>Chaudhuri, Siddhartha</au><au>Kalogerakis, Evangelos</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>GEM3D: GEnerative Medial Abstractions for 3D Shape Synthesis</atitle><jtitle>arXiv.org</jtitle><date>2024-04-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We introduce GEM3D -- a new deep, topology-aware generative model of 3D shapes. The key ingredient of our method is a neural skeleton-based representation encoding information on both shape topology and geometry. Through a denoising diffusion probabilistic model, our method first generates skeleton-based representations following the Medial Axis Transform (MAT), then generates surfaces through a skeleton-driven neural implicit formulation. The neural implicit takes into account the topological and geometric information stored in the generated skeleton representations to yield surfaces that are more topologically and geometrically accurate compared to previous neural field formulations. We discuss applications of our method in shape synthesis and point cloud reconstruction tasks, and evaluate our method both qualitatively and quantitatively. We demonstrate significantly more faithful surface reconstruction and diverse shape generation results compared to the state-of-the-art, also involving challenging scenarios of reconstructing and synthesizing structurally complex, high-genus shape surfaces from Thingi10K and ShapeNet.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2932608742 |
source | Free E- Journals |
subjects | Image reconstruction Probabilistic models Representations Synthesis Three dimensional models Topology |
title | GEM3D: GEnerative Medial Abstractions for 3D Shape Synthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=GEM3D:%20GEnerative%20Medial%20Abstractions%20for%203D%20Shape%20Synthesis&rft.jtitle=arXiv.org&rft.au=Petrov,%20Dmitry&rft.date=2024-04-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2932608742%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932608742&rft_id=info:pmid/&rfr_iscdi=true |