GEM3D: GEnerative Medial Abstractions for 3D Shape Synthesis

We introduce GEM3D -- a new deep, topology-aware generative model of 3D shapes. The key ingredient of our method is a neural skeleton-based representation encoding information on both shape topology and geometry. Through a denoising diffusion probabilistic model, our method first generates skeleton-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Petrov, Dmitry, Goyal, Pradyumn, Thamizharasan, Vikas, Kim, Vladimir G, Gadelha, Matheus, Averkiou, Melinos, Chaudhuri, Siddhartha, Kalogerakis, Evangelos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Petrov, Dmitry
Goyal, Pradyumn
Thamizharasan, Vikas
Kim, Vladimir G
Gadelha, Matheus
Averkiou, Melinos
Chaudhuri, Siddhartha
Kalogerakis, Evangelos
description We introduce GEM3D -- a new deep, topology-aware generative model of 3D shapes. The key ingredient of our method is a neural skeleton-based representation encoding information on both shape topology and geometry. Through a denoising diffusion probabilistic model, our method first generates skeleton-based representations following the Medial Axis Transform (MAT), then generates surfaces through a skeleton-driven neural implicit formulation. The neural implicit takes into account the topological and geometric information stored in the generated skeleton representations to yield surfaces that are more topologically and geometrically accurate compared to previous neural field formulations. We discuss applications of our method in shape synthesis and point cloud reconstruction tasks, and evaluate our method both qualitatively and quantitatively. We demonstrate significantly more faithful surface reconstruction and diverse shape generation results compared to the state-of-the-art, also involving challenging scenarios of reconstructing and synthesizing structurally complex, high-genus shape surfaces from Thingi10K and ShapeNet.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2932608742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932608742</sourcerecordid><originalsourceid>FETCH-proquest_journals_29326087423</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcXf1NXaxUnB3zUstSizJLEtV8E1NyUzMUXBMKi4pSkwuyczPK1ZIyy9SMHZRCM5ILEhVCK7MK8lILc4s5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNLYyMzAwtzEyNj4lQBAHGaNh0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932608742</pqid></control><display><type>article</type><title>GEM3D: GEnerative Medial Abstractions for 3D Shape Synthesis</title><source>Free E- Journals</source><creator>Petrov, Dmitry ; Goyal, Pradyumn ; Thamizharasan, Vikas ; Kim, Vladimir G ; Gadelha, Matheus ; Averkiou, Melinos ; Chaudhuri, Siddhartha ; Kalogerakis, Evangelos</creator><creatorcontrib>Petrov, Dmitry ; Goyal, Pradyumn ; Thamizharasan, Vikas ; Kim, Vladimir G ; Gadelha, Matheus ; Averkiou, Melinos ; Chaudhuri, Siddhartha ; Kalogerakis, Evangelos</creatorcontrib><description>We introduce GEM3D -- a new deep, topology-aware generative model of 3D shapes. The key ingredient of our method is a neural skeleton-based representation encoding information on both shape topology and geometry. Through a denoising diffusion probabilistic model, our method first generates skeleton-based representations following the Medial Axis Transform (MAT), then generates surfaces through a skeleton-driven neural implicit formulation. The neural implicit takes into account the topological and geometric information stored in the generated skeleton representations to yield surfaces that are more topologically and geometrically accurate compared to previous neural field formulations. We discuss applications of our method in shape synthesis and point cloud reconstruction tasks, and evaluate our method both qualitatively and quantitatively. We demonstrate significantly more faithful surface reconstruction and diverse shape generation results compared to the state-of-the-art, also involving challenging scenarios of reconstructing and synthesizing structurally complex, high-genus shape surfaces from Thingi10K and ShapeNet.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Image reconstruction ; Probabilistic models ; Representations ; Synthesis ; Three dimensional models ; Topology</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Petrov, Dmitry</creatorcontrib><creatorcontrib>Goyal, Pradyumn</creatorcontrib><creatorcontrib>Thamizharasan, Vikas</creatorcontrib><creatorcontrib>Kim, Vladimir G</creatorcontrib><creatorcontrib>Gadelha, Matheus</creatorcontrib><creatorcontrib>Averkiou, Melinos</creatorcontrib><creatorcontrib>Chaudhuri, Siddhartha</creatorcontrib><creatorcontrib>Kalogerakis, Evangelos</creatorcontrib><title>GEM3D: GEnerative Medial Abstractions for 3D Shape Synthesis</title><title>arXiv.org</title><description>We introduce GEM3D -- a new deep, topology-aware generative model of 3D shapes. The key ingredient of our method is a neural skeleton-based representation encoding information on both shape topology and geometry. Through a denoising diffusion probabilistic model, our method first generates skeleton-based representations following the Medial Axis Transform (MAT), then generates surfaces through a skeleton-driven neural implicit formulation. The neural implicit takes into account the topological and geometric information stored in the generated skeleton representations to yield surfaces that are more topologically and geometrically accurate compared to previous neural field formulations. We discuss applications of our method in shape synthesis and point cloud reconstruction tasks, and evaluate our method both qualitatively and quantitatively. We demonstrate significantly more faithful surface reconstruction and diverse shape generation results compared to the state-of-the-art, also involving challenging scenarios of reconstructing and synthesizing structurally complex, high-genus shape surfaces from Thingi10K and ShapeNet.</description><subject>Image reconstruction</subject><subject>Probabilistic models</subject><subject>Representations</subject><subject>Synthesis</subject><subject>Three dimensional models</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcXf1NXaxUnB3zUstSizJLEtV8E1NyUzMUXBMKi4pSkwuyczPK1ZIyy9SMHZRCM5ILEhVCK7MK8lILc4s5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNLYyMzAwtzEyNj4lQBAHGaNh0</recordid><startdate>20240411</startdate><enddate>20240411</enddate><creator>Petrov, Dmitry</creator><creator>Goyal, Pradyumn</creator><creator>Thamizharasan, Vikas</creator><creator>Kim, Vladimir G</creator><creator>Gadelha, Matheus</creator><creator>Averkiou, Melinos</creator><creator>Chaudhuri, Siddhartha</creator><creator>Kalogerakis, Evangelos</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240411</creationdate><title>GEM3D: GEnerative Medial Abstractions for 3D Shape Synthesis</title><author>Petrov, Dmitry ; Goyal, Pradyumn ; Thamizharasan, Vikas ; Kim, Vladimir G ; Gadelha, Matheus ; Averkiou, Melinos ; Chaudhuri, Siddhartha ; Kalogerakis, Evangelos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29326087423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Image reconstruction</topic><topic>Probabilistic models</topic><topic>Representations</topic><topic>Synthesis</topic><topic>Three dimensional models</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Petrov, Dmitry</creatorcontrib><creatorcontrib>Goyal, Pradyumn</creatorcontrib><creatorcontrib>Thamizharasan, Vikas</creatorcontrib><creatorcontrib>Kim, Vladimir G</creatorcontrib><creatorcontrib>Gadelha, Matheus</creatorcontrib><creatorcontrib>Averkiou, Melinos</creatorcontrib><creatorcontrib>Chaudhuri, Siddhartha</creatorcontrib><creatorcontrib>Kalogerakis, Evangelos</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrov, Dmitry</au><au>Goyal, Pradyumn</au><au>Thamizharasan, Vikas</au><au>Kim, Vladimir G</au><au>Gadelha, Matheus</au><au>Averkiou, Melinos</au><au>Chaudhuri, Siddhartha</au><au>Kalogerakis, Evangelos</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>GEM3D: GEnerative Medial Abstractions for 3D Shape Synthesis</atitle><jtitle>arXiv.org</jtitle><date>2024-04-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We introduce GEM3D -- a new deep, topology-aware generative model of 3D shapes. The key ingredient of our method is a neural skeleton-based representation encoding information on both shape topology and geometry. Through a denoising diffusion probabilistic model, our method first generates skeleton-based representations following the Medial Axis Transform (MAT), then generates surfaces through a skeleton-driven neural implicit formulation. The neural implicit takes into account the topological and geometric information stored in the generated skeleton representations to yield surfaces that are more topologically and geometrically accurate compared to previous neural field formulations. We discuss applications of our method in shape synthesis and point cloud reconstruction tasks, and evaluate our method both qualitatively and quantitatively. We demonstrate significantly more faithful surface reconstruction and diverse shape generation results compared to the state-of-the-art, also involving challenging scenarios of reconstructing and synthesizing structurally complex, high-genus shape surfaces from Thingi10K and ShapeNet.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2932608742
source Free E- Journals
subjects Image reconstruction
Probabilistic models
Representations
Synthesis
Three dimensional models
Topology
title GEM3D: GEnerative Medial Abstractions for 3D Shape Synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=GEM3D:%20GEnerative%20Medial%20Abstractions%20for%203D%20Shape%20Synthesis&rft.jtitle=arXiv.org&rft.au=Petrov,%20Dmitry&rft.date=2024-04-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2932608742%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932608742&rft_id=info:pmid/&rfr_iscdi=true