Mechanical and microstructural characterization of hybrid fiber metal laminates obtained through sustainable manufacturing
Fiber metal laminates (FMLs) provide lucrative solutions for lightweight commercial aircrafts. They are a class of hybrid composites made from interlaced layers of thin metals and fiber-reinforced adhesives. The present investigation deals with the effects of hybridization and stacking sequence of a...
Gespeichert in:
Veröffentlicht in: | Archives of Civil and Mechanical Engineering 2022-01, Vol.22 (1), p.35, Article 35 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 35 |
container_title | Archives of Civil and Mechanical Engineering |
container_volume | 22 |
creator | Hynes, N. Rajesh Jesudoss Vignesh, N. J. Barile, Claudia Velu, P. Shenbaga Ali, Muhammad Asad Raza, Muhammad Huzaifa Pruncu, Catalin I. |
description | Fiber metal laminates (FMLs) provide lucrative solutions for lightweight commercial aircrafts. They are a class of hybrid composites made from interlaced layers of thin metals and fiber-reinforced adhesives. The present investigation deals with the effects of hybridization and stacking sequence of aluminum sheets (A), jute (J) and Kevlar (K) fibers on the flexural, impact, hardness and tensile properties. Three distinct configurations A/K/A/K/A/K/A (I), A/J/A/K/A/J/A (II) and A/K/J/A/J/K/A (III) of FMLs have been chosen and designed for evaluation of their mechanical attributes. Comparative analysis shows that configuration A/K/J/A/J/K/A (III) offers superior results for flexural, impact, shore D hardness and tensile properties due to hybridization and appropriate stacking sequence with their maximum values as 495 N, 10.4 J, 85.4 and 325.6 MPa, respectively. Outer Kevlar layers supported by the subsequent jute fiber layers enable the configuration A/ K/J/A/J/K/A (III) to resist better when subjected to high mechanical load. Moreover, the microstructural analysis revealed that the jute fibers make a stronger bond with aluminum and Kevlar fibers which prevents FMLs from delamination and early failure. |
doi_str_mv | 10.1007/s43452-021-00350-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932593512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932593512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-12e772f97734e0e408a7d263c436df9a089f0a8c2cf409ffa67c2a8ec01452543</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpD7CyxDowtvNcooqXVMQG1tbEsRtXeRTbWTRfT0KQYMVqRjP33tEcQq4Z3DKA7M7HIk54BJxFACKBaDwjKw65iIRg-fmf_pJsvD8AAIOMszRZkfFVqxo7q7Ch2FW0tcr1PrhBhcFNs2npUAXt7IjB9h3tDa1PpbMVNbbUjrY6TLIGW9th0J72ZUDb6YqG2vXDvqZ-8PMEy0bTFrvB4Bxtu_0VuTDYeL35qWvy8fjwvn2Odm9PL9v7XaQEK0LEuM4yboosE7EGHUOOWcVToWKRVqZAyAsDmCuuTAyFMZhmimOuFbCJShKLNblZco-u_xy0D_LQD66bTkpeCJ4UImF8UvFFNf_vnTby6GyL7iQZyBmzXDDLCbP8xizHySQWkz_OH2n3G_2P6wu6cIM5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932593512</pqid></control><display><type>article</type><title>Mechanical and microstructural characterization of hybrid fiber metal laminates obtained through sustainable manufacturing</title><source>SpringerLink Journals (MCLS)</source><source>ProQuest Central</source><creator>Hynes, N. Rajesh Jesudoss ; Vignesh, N. J. ; Barile, Claudia ; Velu, P. Shenbaga ; Ali, Muhammad Asad ; Raza, Muhammad Huzaifa ; Pruncu, Catalin I.</creator><creatorcontrib>Hynes, N. Rajesh Jesudoss ; Vignesh, N. J. ; Barile, Claudia ; Velu, P. Shenbaga ; Ali, Muhammad Asad ; Raza, Muhammad Huzaifa ; Pruncu, Catalin I.</creatorcontrib><description>Fiber metal laminates (FMLs) provide lucrative solutions for lightweight commercial aircrafts. They are a class of hybrid composites made from interlaced layers of thin metals and fiber-reinforced adhesives. The present investigation deals with the effects of hybridization and stacking sequence of aluminum sheets (A), jute (J) and Kevlar (K) fibers on the flexural, impact, hardness and tensile properties. Three distinct configurations A/K/A/K/A/K/A (I), A/J/A/K/A/J/A (II) and A/K/J/A/J/K/A (III) of FMLs have been chosen and designed for evaluation of their mechanical attributes. Comparative analysis shows that configuration A/K/J/A/J/K/A (III) offers superior results for flexural, impact, shore D hardness and tensile properties due to hybridization and appropriate stacking sequence with their maximum values as 495 N, 10.4 J, 85.4 and 325.6 MPa, respectively. Outer Kevlar layers supported by the subsequent jute fiber layers enable the configuration A/ K/J/A/J/K/A (III) to resist better when subjected to high mechanical load. Moreover, the microstructural analysis revealed that the jute fibers make a stronger bond with aluminum and Kevlar fibers which prevents FMLs from delamination and early failure.</description><identifier>ISSN: 2083-3318</identifier><identifier>ISSN: 1644-9665</identifier><identifier>EISSN: 2083-3318</identifier><identifier>DOI: 10.1007/s43452-021-00350-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Aircraft ; Alloys ; Aluminum ; Aluminum alloys ; Aramid fibers ; Carbon ; Caustic soda ; Civil Engineering ; Commercial aircraft ; Composite materials ; Configurations ; Engineering ; Fiber-metal laminates ; Hardness ; Hybrid composites ; Impact strength ; Interfacial bonding ; Jute ; Kevlar (trademark) ; Laminates ; Manufacturing ; Mechanical Engineering ; Mechanical properties ; Metal fatigue ; Metal sheets ; Microstructural analysis ; Original Article ; Shear strength ; Stacking sequence (composite materials) ; Structural Materials ; Tensile properties ; Thin films</subject><ispartof>Archives of Civil and Mechanical Engineering, 2022-01, Vol.22 (1), p.35, Article 35</ispartof><rights>Wroclaw University of Science and Technology 2021</rights><rights>Wroclaw University of Science and Technology 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-12e772f97734e0e408a7d263c436df9a089f0a8c2cf409ffa67c2a8ec01452543</citedby><cites>FETCH-LOGICAL-c319t-12e772f97734e0e408a7d263c436df9a089f0a8c2cf409ffa67c2a8ec01452543</cites><orcidid>0000-0002-4926-2189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s43452-021-00350-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2932593512?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51298,64362,64366,72216</link.rule.ids></links><search><creatorcontrib>Hynes, N. Rajesh Jesudoss</creatorcontrib><creatorcontrib>Vignesh, N. J.</creatorcontrib><creatorcontrib>Barile, Claudia</creatorcontrib><creatorcontrib>Velu, P. Shenbaga</creatorcontrib><creatorcontrib>Ali, Muhammad Asad</creatorcontrib><creatorcontrib>Raza, Muhammad Huzaifa</creatorcontrib><creatorcontrib>Pruncu, Catalin I.</creatorcontrib><title>Mechanical and microstructural characterization of hybrid fiber metal laminates obtained through sustainable manufacturing</title><title>Archives of Civil and Mechanical Engineering</title><addtitle>Archiv.Civ.Mech.Eng</addtitle><description>Fiber metal laminates (FMLs) provide lucrative solutions for lightweight commercial aircrafts. They are a class of hybrid composites made from interlaced layers of thin metals and fiber-reinforced adhesives. The present investigation deals with the effects of hybridization and stacking sequence of aluminum sheets (A), jute (J) and Kevlar (K) fibers on the flexural, impact, hardness and tensile properties. Three distinct configurations A/K/A/K/A/K/A (I), A/J/A/K/A/J/A (II) and A/K/J/A/J/K/A (III) of FMLs have been chosen and designed for evaluation of their mechanical attributes. Comparative analysis shows that configuration A/K/J/A/J/K/A (III) offers superior results for flexural, impact, shore D hardness and tensile properties due to hybridization and appropriate stacking sequence with their maximum values as 495 N, 10.4 J, 85.4 and 325.6 MPa, respectively. Outer Kevlar layers supported by the subsequent jute fiber layers enable the configuration A/ K/J/A/J/K/A (III) to resist better when subjected to high mechanical load. Moreover, the microstructural analysis revealed that the jute fibers make a stronger bond with aluminum and Kevlar fibers which prevents FMLs from delamination and early failure.</description><subject>Aircraft</subject><subject>Alloys</subject><subject>Aluminum</subject><subject>Aluminum alloys</subject><subject>Aramid fibers</subject><subject>Carbon</subject><subject>Caustic soda</subject><subject>Civil Engineering</subject><subject>Commercial aircraft</subject><subject>Composite materials</subject><subject>Configurations</subject><subject>Engineering</subject><subject>Fiber-metal laminates</subject><subject>Hardness</subject><subject>Hybrid composites</subject><subject>Impact strength</subject><subject>Interfacial bonding</subject><subject>Jute</subject><subject>Kevlar (trademark)</subject><subject>Laminates</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Metal fatigue</subject><subject>Metal sheets</subject><subject>Microstructural analysis</subject><subject>Original Article</subject><subject>Shear strength</subject><subject>Stacking sequence (composite materials)</subject><subject>Structural Materials</subject><subject>Tensile properties</subject><subject>Thin films</subject><issn>2083-3318</issn><issn>1644-9665</issn><issn>2083-3318</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtOwzAQRS0EElXpD7CyxDowtvNcooqXVMQG1tbEsRtXeRTbWTRfT0KQYMVqRjP33tEcQq4Z3DKA7M7HIk54BJxFACKBaDwjKw65iIRg-fmf_pJsvD8AAIOMszRZkfFVqxo7q7Ch2FW0tcr1PrhBhcFNs2npUAXt7IjB9h3tDa1PpbMVNbbUjrY6TLIGW9th0J72ZUDb6YqG2vXDvqZ-8PMEy0bTFrvB4Bxtu_0VuTDYeL35qWvy8fjwvn2Odm9PL9v7XaQEK0LEuM4yboosE7EGHUOOWcVToWKRVqZAyAsDmCuuTAyFMZhmimOuFbCJShKLNblZco-u_xy0D_LQD66bTkpeCJ4UImF8UvFFNf_vnTby6GyL7iQZyBmzXDDLCbP8xizHySQWkz_OH2n3G_2P6wu6cIM5</recordid><startdate>20220103</startdate><enddate>20220103</enddate><creator>Hynes, N. Rajesh Jesudoss</creator><creator>Vignesh, N. J.</creator><creator>Barile, Claudia</creator><creator>Velu, P. Shenbaga</creator><creator>Ali, Muhammad Asad</creator><creator>Raza, Muhammad Huzaifa</creator><creator>Pruncu, Catalin I.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-4926-2189</orcidid></search><sort><creationdate>20220103</creationdate><title>Mechanical and microstructural characterization of hybrid fiber metal laminates obtained through sustainable manufacturing</title><author>Hynes, N. Rajesh Jesudoss ; Vignesh, N. J. ; Barile, Claudia ; Velu, P. Shenbaga ; Ali, Muhammad Asad ; Raza, Muhammad Huzaifa ; Pruncu, Catalin I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-12e772f97734e0e408a7d263c436df9a089f0a8c2cf409ffa67c2a8ec01452543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aircraft</topic><topic>Alloys</topic><topic>Aluminum</topic><topic>Aluminum alloys</topic><topic>Aramid fibers</topic><topic>Carbon</topic><topic>Caustic soda</topic><topic>Civil Engineering</topic><topic>Commercial aircraft</topic><topic>Composite materials</topic><topic>Configurations</topic><topic>Engineering</topic><topic>Fiber-metal laminates</topic><topic>Hardness</topic><topic>Hybrid composites</topic><topic>Impact strength</topic><topic>Interfacial bonding</topic><topic>Jute</topic><topic>Kevlar (trademark)</topic><topic>Laminates</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Metal fatigue</topic><topic>Metal sheets</topic><topic>Microstructural analysis</topic><topic>Original Article</topic><topic>Shear strength</topic><topic>Stacking sequence (composite materials)</topic><topic>Structural Materials</topic><topic>Tensile properties</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hynes, N. Rajesh Jesudoss</creatorcontrib><creatorcontrib>Vignesh, N. J.</creatorcontrib><creatorcontrib>Barile, Claudia</creatorcontrib><creatorcontrib>Velu, P. Shenbaga</creatorcontrib><creatorcontrib>Ali, Muhammad Asad</creatorcontrib><creatorcontrib>Raza, Muhammad Huzaifa</creatorcontrib><creatorcontrib>Pruncu, Catalin I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Archives of Civil and Mechanical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hynes, N. Rajesh Jesudoss</au><au>Vignesh, N. J.</au><au>Barile, Claudia</au><au>Velu, P. Shenbaga</au><au>Ali, Muhammad Asad</au><au>Raza, Muhammad Huzaifa</au><au>Pruncu, Catalin I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical and microstructural characterization of hybrid fiber metal laminates obtained through sustainable manufacturing</atitle><jtitle>Archives of Civil and Mechanical Engineering</jtitle><stitle>Archiv.Civ.Mech.Eng</stitle><date>2022-01-03</date><risdate>2022</risdate><volume>22</volume><issue>1</issue><spage>35</spage><pages>35-</pages><artnum>35</artnum><issn>2083-3318</issn><issn>1644-9665</issn><eissn>2083-3318</eissn><abstract>Fiber metal laminates (FMLs) provide lucrative solutions for lightweight commercial aircrafts. They are a class of hybrid composites made from interlaced layers of thin metals and fiber-reinforced adhesives. The present investigation deals with the effects of hybridization and stacking sequence of aluminum sheets (A), jute (J) and Kevlar (K) fibers on the flexural, impact, hardness and tensile properties. Three distinct configurations A/K/A/K/A/K/A (I), A/J/A/K/A/J/A (II) and A/K/J/A/J/K/A (III) of FMLs have been chosen and designed for evaluation of their mechanical attributes. Comparative analysis shows that configuration A/K/J/A/J/K/A (III) offers superior results for flexural, impact, shore D hardness and tensile properties due to hybridization and appropriate stacking sequence with their maximum values as 495 N, 10.4 J, 85.4 and 325.6 MPa, respectively. Outer Kevlar layers supported by the subsequent jute fiber layers enable the configuration A/ K/J/A/J/K/A (III) to resist better when subjected to high mechanical load. Moreover, the microstructural analysis revealed that the jute fibers make a stronger bond with aluminum and Kevlar fibers which prevents FMLs from delamination and early failure.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s43452-021-00350-z</doi><orcidid>https://orcid.org/0000-0002-4926-2189</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2083-3318 |
ispartof | Archives of Civil and Mechanical Engineering, 2022-01, Vol.22 (1), p.35, Article 35 |
issn | 2083-3318 1644-9665 2083-3318 |
language | eng |
recordid | cdi_proquest_journals_2932593512 |
source | SpringerLink Journals (MCLS); ProQuest Central |
subjects | Aircraft Alloys Aluminum Aluminum alloys Aramid fibers Carbon Caustic soda Civil Engineering Commercial aircraft Composite materials Configurations Engineering Fiber-metal laminates Hardness Hybrid composites Impact strength Interfacial bonding Jute Kevlar (trademark) Laminates Manufacturing Mechanical Engineering Mechanical properties Metal fatigue Metal sheets Microstructural analysis Original Article Shear strength Stacking sequence (composite materials) Structural Materials Tensile properties Thin films |
title | Mechanical and microstructural characterization of hybrid fiber metal laminates obtained through sustainable manufacturing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20and%20microstructural%20characterization%20of%20hybrid%20fiber%20metal%20laminates%20obtained%20through%20sustainable%20manufacturing&rft.jtitle=Archives%20of%20Civil%20and%20Mechanical%20Engineering&rft.au=Hynes,%20N.%20Rajesh%20Jesudoss&rft.date=2022-01-03&rft.volume=22&rft.issue=1&rft.spage=35&rft.pages=35-&rft.artnum=35&rft.issn=2083-3318&rft.eissn=2083-3318&rft_id=info:doi/10.1007/s43452-021-00350-z&rft_dat=%3Cproquest_cross%3E2932593512%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932593512&rft_id=info:pmid/&rfr_iscdi=true |