Equivariant Graph Planning for Navigation
Learning for robot navigation presents a critical and challenging task. The scarcity and costliness of real-world datasets necessitate efficient learning approaches. In this letter, we exploit Euclidean symmetry in planning for 2D navigation, which originates from Euclidean transformations between r...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2024-04, Vol.9 (4), p.3371-3378 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3378 |
---|---|
container_issue | 4 |
container_start_page | 3371 |
container_title | IEEE robotics and automation letters |
container_volume | 9 |
creator | Zhao, Linfeng Li, Hongyu Padr, Takn Jiang, Huaizu Wong, Lawson L.S. |
description | Learning for robot navigation presents a critical and challenging task. The scarcity and costliness of real-world datasets necessitate efficient learning approaches. In this letter, we exploit Euclidean symmetry in planning for 2D navigation, which originates from Euclidean transformations between reference frames and enables parameter sharing. To address the challenges of unstructured environments, we formulate the navigation problem as planning on a geometric graph and develop an equivariant message passing network to perform value iteration. Furthermore, to handle multi-camera input, we propose a learnable equivariant layer to lift features to a desired space. We conduct comprehensive evaluations across five diverse tasks encompassing structured and unstructured environments, along with maps of known and unknown, given point goals or semantic goals. Our experiments confirm the substantial benefits on training efficiency, stability, and generalization. |
doi_str_mv | 10.1109/LRA.2024.3360011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932576402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932576402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692-ca4c656113c54077678d62eed455bba86bee90ceba52bed1c7ed3bf75b5374b63</originalsourceid><addsrcrecordid>eNpNkM9LwzAcxYMoOObuHguePLTm93c9jjE3oajI7iFJ05kx0y5pB_73dmwHT-8dPrwHH4QeCS4IweVL9bUoKKa8YExiTMgNmlAGkDOQ8vZfv0ezlPZ4RAQFVooJel4dB3_S0evQZ-uou-_s86BD8GGXNW3M3vXJ73Tv2_CA7hp9SG52zSnavq62y01efazflosqt7KkudXcSiEJYVZwDCBhXkvqXM2FMEbPpXGuxNYZLahxNbHgamYaEEYw4EayKXq6zHaxPQ4u9WrfDjGMj4qWjAqQHNORwhfKxjal6BrVRf-j468iWJ2VqFGJOitRVyXsD-P8UnE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932576402</pqid></control><display><type>article</type><title>Equivariant Graph Planning for Navigation</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Linfeng ; Li, Hongyu ; Padr, Takn ; Jiang, Huaizu ; Wong, Lawson L.S.</creator><creatorcontrib>Zhao, Linfeng ; Li, Hongyu ; Padr, Takn ; Jiang, Huaizu ; Wong, Lawson L.S.</creatorcontrib><description>Learning for robot navigation presents a critical and challenging task. The scarcity and costliness of real-world datasets necessitate efficient learning approaches. In this letter, we exploit Euclidean symmetry in planning for 2D navigation, which originates from Euclidean transformations between reference frames and enables parameter sharing. To address the challenges of unstructured environments, we formulate the navigation problem as planning on a geometric graph and develop an equivariant message passing network to perform value iteration. Furthermore, to handle multi-camera input, we propose a learnable equivariant layer to lift features to a desired space. We conduct comprehensive evaluations across five diverse tasks encompassing structured and unstructured environments, along with maps of known and unknown, given point goals or semantic goals. Our experiments confirm the substantial benefits on training efficiency, stability, and generalization.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2024.3360011</identifier><language>eng</language><publisher>Piscataway: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Iterative methods ; Learning ; Message passing ; Navigation</subject><ispartof>IEEE robotics and automation letters, 2024-04, Vol.9 (4), p.3371-3378</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c692-ca4c656113c54077678d62eed455bba86bee90ceba52bed1c7ed3bf75b5374b63</cites><orcidid>0009-0007-0918-9777 ; 0000-0002-4588-9929 ; 0000-0001-5123-5801 ; 0000-0002-9944-7587 ; 0000-0002-2300-4237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Zhao, Linfeng</creatorcontrib><creatorcontrib>Li, Hongyu</creatorcontrib><creatorcontrib>Padr, Takn</creatorcontrib><creatorcontrib>Jiang, Huaizu</creatorcontrib><creatorcontrib>Wong, Lawson L.S.</creatorcontrib><title>Equivariant Graph Planning for Navigation</title><title>IEEE robotics and automation letters</title><description>Learning for robot navigation presents a critical and challenging task. The scarcity and costliness of real-world datasets necessitate efficient learning approaches. In this letter, we exploit Euclidean symmetry in planning for 2D navigation, which originates from Euclidean transformations between reference frames and enables parameter sharing. To address the challenges of unstructured environments, we formulate the navigation problem as planning on a geometric graph and develop an equivariant message passing network to perform value iteration. Furthermore, to handle multi-camera input, we propose a learnable equivariant layer to lift features to a desired space. We conduct comprehensive evaluations across five diverse tasks encompassing structured and unstructured environments, along with maps of known and unknown, given point goals or semantic goals. Our experiments confirm the substantial benefits on training efficiency, stability, and generalization.</description><subject>Iterative methods</subject><subject>Learning</subject><subject>Message passing</subject><subject>Navigation</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM9LwzAcxYMoOObuHguePLTm93c9jjE3oajI7iFJ05kx0y5pB_73dmwHT-8dPrwHH4QeCS4IweVL9bUoKKa8YExiTMgNmlAGkDOQ8vZfv0ezlPZ4RAQFVooJel4dB3_S0evQZ-uou-_s86BD8GGXNW3M3vXJ73Tv2_CA7hp9SG52zSnavq62y01efazflosqt7KkudXcSiEJYVZwDCBhXkvqXM2FMEbPpXGuxNYZLahxNbHgamYaEEYw4EayKXq6zHaxPQ4u9WrfDjGMj4qWjAqQHNORwhfKxjal6BrVRf-j468iWJ2VqFGJOitRVyXsD-P8UnE</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Zhao, Linfeng</creator><creator>Li, Hongyu</creator><creator>Padr, Takn</creator><creator>Jiang, Huaizu</creator><creator>Wong, Lawson L.S.</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0007-0918-9777</orcidid><orcidid>https://orcid.org/0000-0002-4588-9929</orcidid><orcidid>https://orcid.org/0000-0001-5123-5801</orcidid><orcidid>https://orcid.org/0000-0002-9944-7587</orcidid><orcidid>https://orcid.org/0000-0002-2300-4237</orcidid></search><sort><creationdate>202404</creationdate><title>Equivariant Graph Planning for Navigation</title><author>Zhao, Linfeng ; Li, Hongyu ; Padr, Takn ; Jiang, Huaizu ; Wong, Lawson L.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692-ca4c656113c54077678d62eed455bba86bee90ceba52bed1c7ed3bf75b5374b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Iterative methods</topic><topic>Learning</topic><topic>Message passing</topic><topic>Navigation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Linfeng</creatorcontrib><creatorcontrib>Li, Hongyu</creatorcontrib><creatorcontrib>Padr, Takn</creatorcontrib><creatorcontrib>Jiang, Huaizu</creatorcontrib><creatorcontrib>Wong, Lawson L.S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Linfeng</au><au>Li, Hongyu</au><au>Padr, Takn</au><au>Jiang, Huaizu</au><au>Wong, Lawson L.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equivariant Graph Planning for Navigation</atitle><jtitle>IEEE robotics and automation letters</jtitle><date>2024-04</date><risdate>2024</risdate><volume>9</volume><issue>4</issue><spage>3371</spage><epage>3378</epage><pages>3371-3378</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><abstract>Learning for robot navigation presents a critical and challenging task. The scarcity and costliness of real-world datasets necessitate efficient learning approaches. In this letter, we exploit Euclidean symmetry in planning for 2D navigation, which originates from Euclidean transformations between reference frames and enables parameter sharing. To address the challenges of unstructured environments, we formulate the navigation problem as planning on a geometric graph and develop an equivariant message passing network to perform value iteration. Furthermore, to handle multi-camera input, we propose a learnable equivariant layer to lift features to a desired space. We conduct comprehensive evaluations across five diverse tasks encompassing structured and unstructured environments, along with maps of known and unknown, given point goals or semantic goals. Our experiments confirm the substantial benefits on training efficiency, stability, and generalization.</abstract><cop>Piscataway</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/LRA.2024.3360011</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0007-0918-9777</orcidid><orcidid>https://orcid.org/0000-0002-4588-9929</orcidid><orcidid>https://orcid.org/0000-0001-5123-5801</orcidid><orcidid>https://orcid.org/0000-0002-9944-7587</orcidid><orcidid>https://orcid.org/0000-0002-2300-4237</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2024-04, Vol.9 (4), p.3371-3378 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_proquest_journals_2932576402 |
source | IEEE Electronic Library (IEL) |
subjects | Iterative methods Learning Message passing Navigation |
title | Equivariant Graph Planning for Navigation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T21%3A09%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equivariant%20Graph%20Planning%20for%20Navigation&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Zhao,%20Linfeng&rft.date=2024-04&rft.volume=9&rft.issue=4&rft.spage=3371&rft.epage=3378&rft.pages=3371-3378&rft.issn=2377-3766&rft.eissn=2377-3766&rft_id=info:doi/10.1109/LRA.2024.3360011&rft_dat=%3Cproquest_cross%3E2932576402%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932576402&rft_id=info:pmid/&rfr_iscdi=true |