Equivariant Graph Planning for Navigation

Learning for robot navigation presents a critical and challenging task. The scarcity and costliness of real-world datasets necessitate efficient learning approaches. In this letter, we exploit Euclidean symmetry in planning for 2D navigation, which originates from Euclidean transformations between r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2024-04, Vol.9 (4), p.3371-3378
Hauptverfasser: Zhao, Linfeng, Li, Hongyu, Padr, Takn, Jiang, Huaizu, Wong, Lawson L.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3378
container_issue 4
container_start_page 3371
container_title IEEE robotics and automation letters
container_volume 9
creator Zhao, Linfeng
Li, Hongyu
Padr, Takn
Jiang, Huaizu
Wong, Lawson L.S.
description Learning for robot navigation presents a critical and challenging task. The scarcity and costliness of real-world datasets necessitate efficient learning approaches. In this letter, we exploit Euclidean symmetry in planning for 2D navigation, which originates from Euclidean transformations between reference frames and enables parameter sharing. To address the challenges of unstructured environments, we formulate the navigation problem as planning on a geometric graph and develop an equivariant message passing network to perform value iteration. Furthermore, to handle multi-camera input, we propose a learnable equivariant layer to lift features to a desired space. We conduct comprehensive evaluations across five diverse tasks encompassing structured and unstructured environments, along with maps of known and unknown, given point goals or semantic goals. Our experiments confirm the substantial benefits on training efficiency, stability, and generalization.
doi_str_mv 10.1109/LRA.2024.3360011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932576402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932576402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692-ca4c656113c54077678d62eed455bba86bee90ceba52bed1c7ed3bf75b5374b63</originalsourceid><addsrcrecordid>eNpNkM9LwzAcxYMoOObuHguePLTm93c9jjE3oajI7iFJ05kx0y5pB_73dmwHT-8dPrwHH4QeCS4IweVL9bUoKKa8YExiTMgNmlAGkDOQ8vZfv0ezlPZ4RAQFVooJel4dB3_S0evQZ-uou-_s86BD8GGXNW3M3vXJ73Tv2_CA7hp9SG52zSnavq62y01efazflosqt7KkudXcSiEJYVZwDCBhXkvqXM2FMEbPpXGuxNYZLahxNbHgamYaEEYw4EayKXq6zHaxPQ4u9WrfDjGMj4qWjAqQHNORwhfKxjal6BrVRf-j468iWJ2VqFGJOitRVyXsD-P8UnE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932576402</pqid></control><display><type>article</type><title>Equivariant Graph Planning for Navigation</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Linfeng ; Li, Hongyu ; Padr, Takn ; Jiang, Huaizu ; Wong, Lawson L.S.</creator><creatorcontrib>Zhao, Linfeng ; Li, Hongyu ; Padr, Takn ; Jiang, Huaizu ; Wong, Lawson L.S.</creatorcontrib><description>Learning for robot navigation presents a critical and challenging task. The scarcity and costliness of real-world datasets necessitate efficient learning approaches. In this letter, we exploit Euclidean symmetry in planning for 2D navigation, which originates from Euclidean transformations between reference frames and enables parameter sharing. To address the challenges of unstructured environments, we formulate the navigation problem as planning on a geometric graph and develop an equivariant message passing network to perform value iteration. Furthermore, to handle multi-camera input, we propose a learnable equivariant layer to lift features to a desired space. We conduct comprehensive evaluations across five diverse tasks encompassing structured and unstructured environments, along with maps of known and unknown, given point goals or semantic goals. Our experiments confirm the substantial benefits on training efficiency, stability, and generalization.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2024.3360011</identifier><language>eng</language><publisher>Piscataway: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Iterative methods ; Learning ; Message passing ; Navigation</subject><ispartof>IEEE robotics and automation letters, 2024-04, Vol.9 (4), p.3371-3378</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c692-ca4c656113c54077678d62eed455bba86bee90ceba52bed1c7ed3bf75b5374b63</cites><orcidid>0009-0007-0918-9777 ; 0000-0002-4588-9929 ; 0000-0001-5123-5801 ; 0000-0002-9944-7587 ; 0000-0002-2300-4237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Zhao, Linfeng</creatorcontrib><creatorcontrib>Li, Hongyu</creatorcontrib><creatorcontrib>Padr, Takn</creatorcontrib><creatorcontrib>Jiang, Huaizu</creatorcontrib><creatorcontrib>Wong, Lawson L.S.</creatorcontrib><title>Equivariant Graph Planning for Navigation</title><title>IEEE robotics and automation letters</title><description>Learning for robot navigation presents a critical and challenging task. The scarcity and costliness of real-world datasets necessitate efficient learning approaches. In this letter, we exploit Euclidean symmetry in planning for 2D navigation, which originates from Euclidean transformations between reference frames and enables parameter sharing. To address the challenges of unstructured environments, we formulate the navigation problem as planning on a geometric graph and develop an equivariant message passing network to perform value iteration. Furthermore, to handle multi-camera input, we propose a learnable equivariant layer to lift features to a desired space. We conduct comprehensive evaluations across five diverse tasks encompassing structured and unstructured environments, along with maps of known and unknown, given point goals or semantic goals. Our experiments confirm the substantial benefits on training efficiency, stability, and generalization.</description><subject>Iterative methods</subject><subject>Learning</subject><subject>Message passing</subject><subject>Navigation</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM9LwzAcxYMoOObuHguePLTm93c9jjE3oajI7iFJ05kx0y5pB_73dmwHT-8dPrwHH4QeCS4IweVL9bUoKKa8YExiTMgNmlAGkDOQ8vZfv0ezlPZ4RAQFVooJel4dB3_S0evQZ-uou-_s86BD8GGXNW3M3vXJ73Tv2_CA7hp9SG52zSnavq62y01efazflosqt7KkudXcSiEJYVZwDCBhXkvqXM2FMEbPpXGuxNYZLahxNbHgamYaEEYw4EayKXq6zHaxPQ4u9WrfDjGMj4qWjAqQHNORwhfKxjal6BrVRf-j468iWJ2VqFGJOitRVyXsD-P8UnE</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Zhao, Linfeng</creator><creator>Li, Hongyu</creator><creator>Padr, Takn</creator><creator>Jiang, Huaizu</creator><creator>Wong, Lawson L.S.</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0007-0918-9777</orcidid><orcidid>https://orcid.org/0000-0002-4588-9929</orcidid><orcidid>https://orcid.org/0000-0001-5123-5801</orcidid><orcidid>https://orcid.org/0000-0002-9944-7587</orcidid><orcidid>https://orcid.org/0000-0002-2300-4237</orcidid></search><sort><creationdate>202404</creationdate><title>Equivariant Graph Planning for Navigation</title><author>Zhao, Linfeng ; Li, Hongyu ; Padr, Takn ; Jiang, Huaizu ; Wong, Lawson L.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692-ca4c656113c54077678d62eed455bba86bee90ceba52bed1c7ed3bf75b5374b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Iterative methods</topic><topic>Learning</topic><topic>Message passing</topic><topic>Navigation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Linfeng</creatorcontrib><creatorcontrib>Li, Hongyu</creatorcontrib><creatorcontrib>Padr, Takn</creatorcontrib><creatorcontrib>Jiang, Huaizu</creatorcontrib><creatorcontrib>Wong, Lawson L.S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Linfeng</au><au>Li, Hongyu</au><au>Padr, Takn</au><au>Jiang, Huaizu</au><au>Wong, Lawson L.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equivariant Graph Planning for Navigation</atitle><jtitle>IEEE robotics and automation letters</jtitle><date>2024-04</date><risdate>2024</risdate><volume>9</volume><issue>4</issue><spage>3371</spage><epage>3378</epage><pages>3371-3378</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><abstract>Learning for robot navigation presents a critical and challenging task. The scarcity and costliness of real-world datasets necessitate efficient learning approaches. In this letter, we exploit Euclidean symmetry in planning for 2D navigation, which originates from Euclidean transformations between reference frames and enables parameter sharing. To address the challenges of unstructured environments, we formulate the navigation problem as planning on a geometric graph and develop an equivariant message passing network to perform value iteration. Furthermore, to handle multi-camera input, we propose a learnable equivariant layer to lift features to a desired space. We conduct comprehensive evaluations across five diverse tasks encompassing structured and unstructured environments, along with maps of known and unknown, given point goals or semantic goals. Our experiments confirm the substantial benefits on training efficiency, stability, and generalization.</abstract><cop>Piscataway</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/LRA.2024.3360011</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0007-0918-9777</orcidid><orcidid>https://orcid.org/0000-0002-4588-9929</orcidid><orcidid>https://orcid.org/0000-0001-5123-5801</orcidid><orcidid>https://orcid.org/0000-0002-9944-7587</orcidid><orcidid>https://orcid.org/0000-0002-2300-4237</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2024-04, Vol.9 (4), p.3371-3378
issn 2377-3766
2377-3766
language eng
recordid cdi_proquest_journals_2932576402
source IEEE Electronic Library (IEL)
subjects Iterative methods
Learning
Message passing
Navigation
title Equivariant Graph Planning for Navigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T21%3A09%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equivariant%20Graph%20Planning%20for%20Navigation&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Zhao,%20Linfeng&rft.date=2024-04&rft.volume=9&rft.issue=4&rft.spage=3371&rft.epage=3378&rft.pages=3371-3378&rft.issn=2377-3766&rft.eissn=2377-3766&rft_id=info:doi/10.1109/LRA.2024.3360011&rft_dat=%3Cproquest_cross%3E2932576402%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932576402&rft_id=info:pmid/&rfr_iscdi=true