DNN-Based Optimization to Significantly Speed Up and Increase the Accuracy of Electronic Circuit Design

Efficient design and optimization of flip-flops can significantly affect overall circuit performance as they have many applications in digital systems which can impact the overall power consumption and timings of the emerging system on chips (SOCs). In this paper, modeling, design, and optimization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2024-03, Vol.71 (3), p.1273-1284
Hauptverfasser: Sajjadi, Sayed Alireza, Sadrossadat, Sayed Alireza, Moftakharzadeh, Ali, Nabavi, Morteza, Sawan, Mohamad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1284
container_issue 3
container_start_page 1273
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 71
creator Sajjadi, Sayed Alireza
Sadrossadat, Sayed Alireza
Moftakharzadeh, Ali
Nabavi, Morteza
Sawan, Mohamad
description Efficient design and optimization of flip-flops can significantly affect overall circuit performance as they have many applications in digital systems which can impact the overall power consumption and timings of the emerging system on chips (SOCs). In this paper, modeling, design, and optimization of transmission gate-based master-slave positive-edge-triggered flip-flop (TGFF) in 16 nm complementary metal-oxide semiconductor (CMOS) is proposed. The proposed deep neural network (DNN)-based optimization method first generates an accurate model for different performance metrics by using the training data obtained from transistor-level models which are over 100 times faster than them. Then, these accurate DNN-based models are used to optimize design goals such as dynamic and static power, setup time, and propagation delay (Data to Output). Using these fast, accurate models significantly speed up the design procedure and leads to a considerably more optimized design. Additionally, as the DNN is a universal approximator that can catch any nonlinear input-output relationship, the proposed method can be used to optimize circuits for any performance metric, even if no analytical formula is available. Additionally, circuit design based on the proposed method is automated which, facilitates the tasks of circuit designers.
doi_str_mv 10.1109/TCSI.2023.3347688
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2932576370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10385177</ieee_id><sourcerecordid>2932576370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-a2dfb68ceab185b9c29392123f05c8b58bbcf2bc4018a87137d1dd3ecb3497a43</originalsourceid><addsrcrecordid>eNpNkD1vwjAURa2qlUppf0ClDpY6h_ojiZ2RBtoiIRiA2XJeHGoESWo7A_31TQRDp3eHc--TDkLPlEwoJdnbNt8sJowwPuE8FqmUN2hEk0RGRJL0dshxFknO5D168P5ACMsIpyO0n61W0bv2psTrNtiT_dXBNjUODd7YfW0rC7oOxzPetKZndi3WdYkXNTjTl3D4NngK0DkNZ9xUeH40EFxTW8C5ddDZgGfG90OP6K7SR2-erneMdh_zbf4VLdefi3y6jIDFaYg0K6silWB0QWVSZMAynjHKeEUSkEUiiwIqVkBMqNRSUC5KWpbcQMHjTOiYj9HrZbd1zU9nfFCHpnN1_1L1UywRKRekp-iFAtd470ylWmdP2p0VJWrwqQafavCprj77zsulY40x_3guEyoE_wORu3HK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932576370</pqid></control><display><type>article</type><title>DNN-Based Optimization to Significantly Speed Up and Increase the Accuracy of Electronic Circuit Design</title><source>IEEE Electronic Library (IEL)</source><creator>Sajjadi, Sayed Alireza ; Sadrossadat, Sayed Alireza ; Moftakharzadeh, Ali ; Nabavi, Morteza ; Sawan, Mohamad</creator><creatorcontrib>Sajjadi, Sayed Alireza ; Sadrossadat, Sayed Alireza ; Moftakharzadeh, Ali ; Nabavi, Morteza ; Sawan, Mohamad</creatorcontrib><description>Efficient design and optimization of flip-flops can significantly affect overall circuit performance as they have many applications in digital systems which can impact the overall power consumption and timings of the emerging system on chips (SOCs). In this paper, modeling, design, and optimization of transmission gate-based master-slave positive-edge-triggered flip-flop (TGFF) in 16 nm complementary metal-oxide semiconductor (CMOS) is proposed. The proposed deep neural network (DNN)-based optimization method first generates an accurate model for different performance metrics by using the training data obtained from transistor-level models which are over 100 times faster than them. Then, these accurate DNN-based models are used to optimize design goals such as dynamic and static power, setup time, and propagation delay (Data to Output). Using these fast, accurate models significantly speed up the design procedure and leads to a considerably more optimized design. Additionally, as the DNN is a universal approximator that can catch any nonlinear input-output relationship, the proposed method can be used to optimize circuits for any performance metric, even if no analytical formula is available. Additionally, circuit design based on the proposed method is automated which, facilitates the tasks of circuit designers.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2023.3347688</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Business metrics ; Circuit design ; circuit design optimization ; circuit simulation ; CMOS ; Computer-aided design ; deep neural network (DNN) ; Delays ; Design ; Design optimization ; Digital systems ; Electronic circuits ; flip-flop circuits ; Flip-flops ; gate sizing ; Integrated circuit modeling ; Logic gates ; Mathematical models ; Measurement ; nanometer regime technologies ; Optimization ; Performance measurement ; Power consumption ; Transmission gates</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2024-03, Vol.71 (3), p.1273-1284</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-a2dfb68ceab185b9c29392123f05c8b58bbcf2bc4018a87137d1dd3ecb3497a43</cites><orcidid>0000-0002-5634-6815 ; 0000-0001-7960-471X ; 0009-0006-6383-7483 ; 0000-0002-4137-7272 ; 0000-0002-6192-1167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10385177$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10385177$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sajjadi, Sayed Alireza</creatorcontrib><creatorcontrib>Sadrossadat, Sayed Alireza</creatorcontrib><creatorcontrib>Moftakharzadeh, Ali</creatorcontrib><creatorcontrib>Nabavi, Morteza</creatorcontrib><creatorcontrib>Sawan, Mohamad</creatorcontrib><title>DNN-Based Optimization to Significantly Speed Up and Increase the Accuracy of Electronic Circuit Design</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>Efficient design and optimization of flip-flops can significantly affect overall circuit performance as they have many applications in digital systems which can impact the overall power consumption and timings of the emerging system on chips (SOCs). In this paper, modeling, design, and optimization of transmission gate-based master-slave positive-edge-triggered flip-flop (TGFF) in 16 nm complementary metal-oxide semiconductor (CMOS) is proposed. The proposed deep neural network (DNN)-based optimization method first generates an accurate model for different performance metrics by using the training data obtained from transistor-level models which are over 100 times faster than them. Then, these accurate DNN-based models are used to optimize design goals such as dynamic and static power, setup time, and propagation delay (Data to Output). Using these fast, accurate models significantly speed up the design procedure and leads to a considerably more optimized design. Additionally, as the DNN is a universal approximator that can catch any nonlinear input-output relationship, the proposed method can be used to optimize circuits for any performance metric, even if no analytical formula is available. Additionally, circuit design based on the proposed method is automated which, facilitates the tasks of circuit designers.</description><subject>Artificial neural networks</subject><subject>Business metrics</subject><subject>Circuit design</subject><subject>circuit design optimization</subject><subject>circuit simulation</subject><subject>CMOS</subject><subject>Computer-aided design</subject><subject>deep neural network (DNN)</subject><subject>Delays</subject><subject>Design</subject><subject>Design optimization</subject><subject>Digital systems</subject><subject>Electronic circuits</subject><subject>flip-flop circuits</subject><subject>Flip-flops</subject><subject>gate sizing</subject><subject>Integrated circuit modeling</subject><subject>Logic gates</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>nanometer regime technologies</subject><subject>Optimization</subject><subject>Performance measurement</subject><subject>Power consumption</subject><subject>Transmission gates</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1vwjAURa2qlUppf0ClDpY6h_ojiZ2RBtoiIRiA2XJeHGoESWo7A_31TQRDp3eHc--TDkLPlEwoJdnbNt8sJowwPuE8FqmUN2hEk0RGRJL0dshxFknO5D168P5ACMsIpyO0n61W0bv2psTrNtiT_dXBNjUODd7YfW0rC7oOxzPetKZndi3WdYkXNTjTl3D4NngK0DkNZ9xUeH40EFxTW8C5ddDZgGfG90OP6K7SR2-erneMdh_zbf4VLdefi3y6jIDFaYg0K6silWB0QWVSZMAynjHKeEUSkEUiiwIqVkBMqNRSUC5KWpbcQMHjTOiYj9HrZbd1zU9nfFCHpnN1_1L1UywRKRekp-iFAtd470ylWmdP2p0VJWrwqQafavCprj77zsulY40x_3guEyoE_wORu3HK</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Sajjadi, Sayed Alireza</creator><creator>Sadrossadat, Sayed Alireza</creator><creator>Moftakharzadeh, Ali</creator><creator>Nabavi, Morteza</creator><creator>Sawan, Mohamad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5634-6815</orcidid><orcidid>https://orcid.org/0000-0001-7960-471X</orcidid><orcidid>https://orcid.org/0009-0006-6383-7483</orcidid><orcidid>https://orcid.org/0000-0002-4137-7272</orcidid><orcidid>https://orcid.org/0000-0002-6192-1167</orcidid></search><sort><creationdate>20240301</creationdate><title>DNN-Based Optimization to Significantly Speed Up and Increase the Accuracy of Electronic Circuit Design</title><author>Sajjadi, Sayed Alireza ; Sadrossadat, Sayed Alireza ; Moftakharzadeh, Ali ; Nabavi, Morteza ; Sawan, Mohamad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-a2dfb68ceab185b9c29392123f05c8b58bbcf2bc4018a87137d1dd3ecb3497a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Business metrics</topic><topic>Circuit design</topic><topic>circuit design optimization</topic><topic>circuit simulation</topic><topic>CMOS</topic><topic>Computer-aided design</topic><topic>deep neural network (DNN)</topic><topic>Delays</topic><topic>Design</topic><topic>Design optimization</topic><topic>Digital systems</topic><topic>Electronic circuits</topic><topic>flip-flop circuits</topic><topic>Flip-flops</topic><topic>gate sizing</topic><topic>Integrated circuit modeling</topic><topic>Logic gates</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>nanometer regime technologies</topic><topic>Optimization</topic><topic>Performance measurement</topic><topic>Power consumption</topic><topic>Transmission gates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sajjadi, Sayed Alireza</creatorcontrib><creatorcontrib>Sadrossadat, Sayed Alireza</creatorcontrib><creatorcontrib>Moftakharzadeh, Ali</creatorcontrib><creatorcontrib>Nabavi, Morteza</creatorcontrib><creatorcontrib>Sawan, Mohamad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sajjadi, Sayed Alireza</au><au>Sadrossadat, Sayed Alireza</au><au>Moftakharzadeh, Ali</au><au>Nabavi, Morteza</au><au>Sawan, Mohamad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNN-Based Optimization to Significantly Speed Up and Increase the Accuracy of Electronic Circuit Design</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>71</volume><issue>3</issue><spage>1273</spage><epage>1284</epage><pages>1273-1284</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>Efficient design and optimization of flip-flops can significantly affect overall circuit performance as they have many applications in digital systems which can impact the overall power consumption and timings of the emerging system on chips (SOCs). In this paper, modeling, design, and optimization of transmission gate-based master-slave positive-edge-triggered flip-flop (TGFF) in 16 nm complementary metal-oxide semiconductor (CMOS) is proposed. The proposed deep neural network (DNN)-based optimization method first generates an accurate model for different performance metrics by using the training data obtained from transistor-level models which are over 100 times faster than them. Then, these accurate DNN-based models are used to optimize design goals such as dynamic and static power, setup time, and propagation delay (Data to Output). Using these fast, accurate models significantly speed up the design procedure and leads to a considerably more optimized design. Additionally, as the DNN is a universal approximator that can catch any nonlinear input-output relationship, the proposed method can be used to optimize circuits for any performance metric, even if no analytical formula is available. Additionally, circuit design based on the proposed method is automated which, facilitates the tasks of circuit designers.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2023.3347688</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5634-6815</orcidid><orcidid>https://orcid.org/0000-0001-7960-471X</orcidid><orcidid>https://orcid.org/0009-0006-6383-7483</orcidid><orcidid>https://orcid.org/0000-0002-4137-7272</orcidid><orcidid>https://orcid.org/0000-0002-6192-1167</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2024-03, Vol.71 (3), p.1273-1284
issn 1549-8328
1558-0806
language eng
recordid cdi_proquest_journals_2932576370
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Business metrics
Circuit design
circuit design optimization
circuit simulation
CMOS
Computer-aided design
deep neural network (DNN)
Delays
Design
Design optimization
Digital systems
Electronic circuits
flip-flop circuits
Flip-flops
gate sizing
Integrated circuit modeling
Logic gates
Mathematical models
Measurement
nanometer regime technologies
Optimization
Performance measurement
Power consumption
Transmission gates
title DNN-Based Optimization to Significantly Speed Up and Increase the Accuracy of Electronic Circuit Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A20%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNN-Based%20Optimization%20to%20Significantly%20Speed%20Up%20and%20Increase%20the%20Accuracy%20of%20Electronic%20Circuit%20Design&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Sajjadi,%20Sayed%20Alireza&rft.date=2024-03-01&rft.volume=71&rft.issue=3&rft.spage=1273&rft.epage=1284&rft.pages=1273-1284&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2023.3347688&rft_dat=%3Cproquest_RIE%3E2932576370%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932576370&rft_id=info:pmid/&rft_ieee_id=10385177&rfr_iscdi=true