Mechanical Properties and Corrosion Behavior of Multi-Microalloying Mg Alloys Prepared by Adding AlCoCrFeNi Alloy
In this work, a series of multi-microalloying Mg alloys with a high degradation rate and high strength was prepared by adding AlCoCrFeNi HEA particles to the Mg melt followed by hot extrusion. The microstructure evolution and mechanical properties of the alloys were studied, meanwhile, the corrosion...
Gespeichert in:
Veröffentlicht in: | Acta metallurgica sinica : English letters 2022-08, Vol.35 (8), p.1301-1316 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1316 |
---|---|
container_issue | 8 |
container_start_page | 1301 |
container_title | Acta metallurgica sinica : English letters |
container_volume | 35 |
creator | Zhou, Xiong Le, Qichi Hu, Chenglu Guo, Ruizhen Wang, Tong Liu, Chunming Li, Dandan Li, Xiaoqiang |
description | In this work, a series of multi-microalloying Mg alloys with a high degradation rate and high strength was prepared by adding AlCoCrFeNi HEA particles to the Mg melt followed by hot extrusion. The microstructure evolution and mechanical properties of the alloys were studied, meanwhile, the corrosion properties were evaluated by immersion weight loss and electrochemical tests. Results indicated that HEA particles in the Mg melt were decomposed and formed the Ni-rich phase, which was distributed uniformly in the Mg matrix. Compared with the pure Mg matrix, the Mg-3 HEA alloy exhibited excellent mechanical properties of the ultimate tensile strength ~ 237 MPa and tensile yield strength ~ 181 MPa, an increased rate of ~ 49.1 and ~ 96.7%, respectively, without sacrificing the elongation. And the ultimate compressive strength (UCS) and compressive yield strength increased by ~ 31.5 and ~ 43% to 392 ± 3 and 103 ± 2 MPa, respectively. Based on theoretical analysis, the high YS of the alloys was mainly attributed to fine-grain strengthening and second phase strengthening. Besides, based on the study of corrosion behavior, it was found that with the increase in HEA particle content, the degradation rate of the composites increased because of the promotion of micro-galvanic corrosion, and the Mg-3 HEA alloy showed a maximum degradation rate of ~ 25.2 mg cm
−2
h
−1
. |
doi_str_mv | 10.1007/s40195-021-01368-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932573129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932573129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2781-bf0139573ce463768f44ffbbd7cbed25ba8a91575041432c2095043d84a26efb3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLE2eBX4vgYIgpIDXCAs-UkdusqxKndIvXvcQkSN047q52Z1QwA1wTfEozFXeSYyAxhShAmLC8QOQEzSiRHhBbyFMwSK0eCSHIOLmLcpI3yTMzAtjbtWg-u1T18C340YedMhHroYOVD8NH5Ad6btf5yPkBvYb3vdw7Vrg1e970_uGEF6xUsjzgmCzPqYDrYHGDZdcdj2Ve-Cgvz4ibSJTizuo_m6nfOwcfi4b16QsvXx-eqXKKWioKgxqYgMhOsNTxnIi8s59Y2TSfaxnQ0a3ShJclEhjnhjLYUywRZV3BNc2MbNgc3k-8Y_HZv4k5t_D4M6aWiktHkTNKcAzqxUp4Yg7FqDO5Th4MiWB2rVVO1KlWrfqpVJInYJIqJPKxM-LP-R_UN9AZ7wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932573129</pqid></control><display><type>article</type><title>Mechanical Properties and Corrosion Behavior of Multi-Microalloying Mg Alloys Prepared by Adding AlCoCrFeNi Alloy</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Zhou, Xiong ; Le, Qichi ; Hu, Chenglu ; Guo, Ruizhen ; Wang, Tong ; Liu, Chunming ; Li, Dandan ; Li, Xiaoqiang</creator><creatorcontrib>Zhou, Xiong ; Le, Qichi ; Hu, Chenglu ; Guo, Ruizhen ; Wang, Tong ; Liu, Chunming ; Li, Dandan ; Li, Xiaoqiang</creatorcontrib><description>In this work, a series of multi-microalloying Mg alloys with a high degradation rate and high strength was prepared by adding AlCoCrFeNi HEA particles to the Mg melt followed by hot extrusion. The microstructure evolution and mechanical properties of the alloys were studied, meanwhile, the corrosion properties were evaluated by immersion weight loss and electrochemical tests. Results indicated that HEA particles in the Mg melt were decomposed and formed the Ni-rich phase, which was distributed uniformly in the Mg matrix. Compared with the pure Mg matrix, the Mg-3 HEA alloy exhibited excellent mechanical properties of the ultimate tensile strength ~ 237 MPa and tensile yield strength ~ 181 MPa, an increased rate of ~ 49.1 and ~ 96.7%, respectively, without sacrificing the elongation. And the ultimate compressive strength (UCS) and compressive yield strength increased by ~ 31.5 and ~ 43% to 392 ± 3 and 103 ± 2 MPa, respectively. Based on theoretical analysis, the high YS of the alloys was mainly attributed to fine-grain strengthening and second phase strengthening. Besides, based on the study of corrosion behavior, it was found that with the increase in HEA particle content, the degradation rate of the composites increased because of the promotion of micro-galvanic corrosion, and the Mg-3 HEA alloy showed a maximum degradation rate of ~ 25.2 mg cm
−2
h
−1
.</description><identifier>ISSN: 1006-7191</identifier><identifier>EISSN: 2194-1289</identifier><identifier>DOI: 10.1007/s40195-021-01368-1</identifier><language>eng</language><publisher>Beijing: The Chinese Society for Metals</publisher><subject>Alloys ; Carbon steel ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Compressive strength ; Corrosion ; Corrosion and Coatings ; Corrosion tests ; Degradation ; Galvanic corrosion ; Hot extrusion ; Magnesium base alloys ; Materials Science ; Mechanical properties ; Metallic Materials ; Metallurgy ; Microalloying ; Microscopy ; Microstructure ; Nanotechnology ; Organometallic Chemistry ; Process controls ; Spectroscopy/Spectrometry ; Stainless steel ; Strengthening ; Tribology ; Ultimate tensile strength ; Weight loss ; Yield strength</subject><ispartof>Acta metallurgica sinica : English letters, 2022-08, Vol.35 (8), p.1301-1316</ispartof><rights>The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2781-bf0139573ce463768f44ffbbd7cbed25ba8a91575041432c2095043d84a26efb3</citedby><cites>FETCH-LOGICAL-c2781-bf0139573ce463768f44ffbbd7cbed25ba8a91575041432c2095043d84a26efb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40195-021-01368-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2932573129?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Zhou, Xiong</creatorcontrib><creatorcontrib>Le, Qichi</creatorcontrib><creatorcontrib>Hu, Chenglu</creatorcontrib><creatorcontrib>Guo, Ruizhen</creatorcontrib><creatorcontrib>Wang, Tong</creatorcontrib><creatorcontrib>Liu, Chunming</creatorcontrib><creatorcontrib>Li, Dandan</creatorcontrib><creatorcontrib>Li, Xiaoqiang</creatorcontrib><title>Mechanical Properties and Corrosion Behavior of Multi-Microalloying Mg Alloys Prepared by Adding AlCoCrFeNi Alloy</title><title>Acta metallurgica sinica : English letters</title><addtitle>Acta Metall. Sin. (Engl. Lett.)</addtitle><description>In this work, a series of multi-microalloying Mg alloys with a high degradation rate and high strength was prepared by adding AlCoCrFeNi HEA particles to the Mg melt followed by hot extrusion. The microstructure evolution and mechanical properties of the alloys were studied, meanwhile, the corrosion properties were evaluated by immersion weight loss and electrochemical tests. Results indicated that HEA particles in the Mg melt were decomposed and formed the Ni-rich phase, which was distributed uniformly in the Mg matrix. Compared with the pure Mg matrix, the Mg-3 HEA alloy exhibited excellent mechanical properties of the ultimate tensile strength ~ 237 MPa and tensile yield strength ~ 181 MPa, an increased rate of ~ 49.1 and ~ 96.7%, respectively, without sacrificing the elongation. And the ultimate compressive strength (UCS) and compressive yield strength increased by ~ 31.5 and ~ 43% to 392 ± 3 and 103 ± 2 MPa, respectively. Based on theoretical analysis, the high YS of the alloys was mainly attributed to fine-grain strengthening and second phase strengthening. Besides, based on the study of corrosion behavior, it was found that with the increase in HEA particle content, the degradation rate of the composites increased because of the promotion of micro-galvanic corrosion, and the Mg-3 HEA alloy showed a maximum degradation rate of ~ 25.2 mg cm
−2
h
−1
.</description><subject>Alloys</subject><subject>Carbon steel</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Compressive strength</subject><subject>Corrosion</subject><subject>Corrosion and Coatings</subject><subject>Corrosion tests</subject><subject>Degradation</subject><subject>Galvanic corrosion</subject><subject>Hot extrusion</subject><subject>Magnesium base alloys</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Microalloying</subject><subject>Microscopy</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Organometallic Chemistry</subject><subject>Process controls</subject><subject>Spectroscopy/Spectrometry</subject><subject>Stainless steel</subject><subject>Strengthening</subject><subject>Tribology</subject><subject>Ultimate tensile strength</subject><subject>Weight loss</subject><subject>Yield strength</subject><issn>1006-7191</issn><issn>2194-1289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UMtOwzAQtBBIlMIPcLLE2eBX4vgYIgpIDXCAs-UkdusqxKndIvXvcQkSN047q52Z1QwA1wTfEozFXeSYyAxhShAmLC8QOQEzSiRHhBbyFMwSK0eCSHIOLmLcpI3yTMzAtjbtWg-u1T18C340YedMhHroYOVD8NH5Ad6btf5yPkBvYb3vdw7Vrg1e970_uGEF6xUsjzgmCzPqYDrYHGDZdcdj2Ve-Cgvz4ibSJTizuo_m6nfOwcfi4b16QsvXx-eqXKKWioKgxqYgMhOsNTxnIi8s59Y2TSfaxnQ0a3ShJclEhjnhjLYUywRZV3BNc2MbNgc3k-8Y_HZv4k5t_D4M6aWiktHkTNKcAzqxUp4Yg7FqDO5Th4MiWB2rVVO1KlWrfqpVJInYJIqJPKxM-LP-R_UN9AZ7wg</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Zhou, Xiong</creator><creator>Le, Qichi</creator><creator>Hu, Chenglu</creator><creator>Guo, Ruizhen</creator><creator>Wang, Tong</creator><creator>Liu, Chunming</creator><creator>Li, Dandan</creator><creator>Li, Xiaoqiang</creator><general>The Chinese Society for Metals</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220801</creationdate><title>Mechanical Properties and Corrosion Behavior of Multi-Microalloying Mg Alloys Prepared by Adding AlCoCrFeNi Alloy</title><author>Zhou, Xiong ; Le, Qichi ; Hu, Chenglu ; Guo, Ruizhen ; Wang, Tong ; Liu, Chunming ; Li, Dandan ; Li, Xiaoqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2781-bf0139573ce463768f44ffbbd7cbed25ba8a91575041432c2095043d84a26efb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloys</topic><topic>Carbon steel</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Compressive strength</topic><topic>Corrosion</topic><topic>Corrosion and Coatings</topic><topic>Corrosion tests</topic><topic>Degradation</topic><topic>Galvanic corrosion</topic><topic>Hot extrusion</topic><topic>Magnesium base alloys</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Microalloying</topic><topic>Microscopy</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Organometallic Chemistry</topic><topic>Process controls</topic><topic>Spectroscopy/Spectrometry</topic><topic>Stainless steel</topic><topic>Strengthening</topic><topic>Tribology</topic><topic>Ultimate tensile strength</topic><topic>Weight loss</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xiong</creatorcontrib><creatorcontrib>Le, Qichi</creatorcontrib><creatorcontrib>Hu, Chenglu</creatorcontrib><creatorcontrib>Guo, Ruizhen</creatorcontrib><creatorcontrib>Wang, Tong</creatorcontrib><creatorcontrib>Liu, Chunming</creatorcontrib><creatorcontrib>Li, Dandan</creatorcontrib><creatorcontrib>Li, Xiaoqiang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Acta metallurgica sinica : English letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xiong</au><au>Le, Qichi</au><au>Hu, Chenglu</au><au>Guo, Ruizhen</au><au>Wang, Tong</au><au>Liu, Chunming</au><au>Li, Dandan</au><au>Li, Xiaoqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Properties and Corrosion Behavior of Multi-Microalloying Mg Alloys Prepared by Adding AlCoCrFeNi Alloy</atitle><jtitle>Acta metallurgica sinica : English letters</jtitle><stitle>Acta Metall. Sin. (Engl. Lett.)</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>35</volume><issue>8</issue><spage>1301</spage><epage>1316</epage><pages>1301-1316</pages><issn>1006-7191</issn><eissn>2194-1289</eissn><abstract>In this work, a series of multi-microalloying Mg alloys with a high degradation rate and high strength was prepared by adding AlCoCrFeNi HEA particles to the Mg melt followed by hot extrusion. The microstructure evolution and mechanical properties of the alloys were studied, meanwhile, the corrosion properties were evaluated by immersion weight loss and electrochemical tests. Results indicated that HEA particles in the Mg melt were decomposed and formed the Ni-rich phase, which was distributed uniformly in the Mg matrix. Compared with the pure Mg matrix, the Mg-3 HEA alloy exhibited excellent mechanical properties of the ultimate tensile strength ~ 237 MPa and tensile yield strength ~ 181 MPa, an increased rate of ~ 49.1 and ~ 96.7%, respectively, without sacrificing the elongation. And the ultimate compressive strength (UCS) and compressive yield strength increased by ~ 31.5 and ~ 43% to 392 ± 3 and 103 ± 2 MPa, respectively. Based on theoretical analysis, the high YS of the alloys was mainly attributed to fine-grain strengthening and second phase strengthening. Besides, based on the study of corrosion behavior, it was found that with the increase in HEA particle content, the degradation rate of the composites increased because of the promotion of micro-galvanic corrosion, and the Mg-3 HEA alloy showed a maximum degradation rate of ~ 25.2 mg cm
−2
h
−1
.</abstract><cop>Beijing</cop><pub>The Chinese Society for Metals</pub><doi>10.1007/s40195-021-01368-1</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1006-7191 |
ispartof | Acta metallurgica sinica : English letters, 2022-08, Vol.35 (8), p.1301-1316 |
issn | 1006-7191 2194-1289 |
language | eng |
recordid | cdi_proquest_journals_2932573129 |
source | ProQuest Central UK/Ireland; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Alloys Carbon steel Characterization and Evaluation of Materials Chemistry and Materials Science Compressive strength Corrosion Corrosion and Coatings Corrosion tests Degradation Galvanic corrosion Hot extrusion Magnesium base alloys Materials Science Mechanical properties Metallic Materials Metallurgy Microalloying Microscopy Microstructure Nanotechnology Organometallic Chemistry Process controls Spectroscopy/Spectrometry Stainless steel Strengthening Tribology Ultimate tensile strength Weight loss Yield strength |
title | Mechanical Properties and Corrosion Behavior of Multi-Microalloying Mg Alloys Prepared by Adding AlCoCrFeNi Alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A41%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Properties%20and%20Corrosion%20Behavior%20of%20Multi-Microalloying%20Mg%20Alloys%20Prepared%20by%20Adding%20AlCoCrFeNi%20Alloy&rft.jtitle=Acta%20metallurgica%20sinica%20:%20English%20letters&rft.au=Zhou,%20Xiong&rft.date=2022-08-01&rft.volume=35&rft.issue=8&rft.spage=1301&rft.epage=1316&rft.pages=1301-1316&rft.issn=1006-7191&rft.eissn=2194-1289&rft_id=info:doi/10.1007/s40195-021-01368-1&rft_dat=%3Cproquest_cross%3E2932573129%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932573129&rft_id=info:pmid/&rfr_iscdi=true |