Domain Decomposition for 3-D Nonlinear Magnetostatic Problems: Newton–Krylov–Schur Versus Schur–Newton–Krylov Methods
Domain decomposition is a strategy designed to be used on parallel machines. This strategy leads to hybrid methods between direct and iterative solvers and allows users to benefit from the advantages of both. Lately, the growing size of simulations in electromagnetics brought to light the interest o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2024-03, Vol.60 (3), p.1 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transactions on magnetics |
container_volume | 60 |
creator | Ghenai, Mohamed I Perrussel, Ronan Chadebec, Olivier Vi, Frederic Jean-Michel Guichon Meunier, Gerard Siau, Jonathan |
description | Domain decomposition is a strategy designed to be used on parallel machines. This strategy leads to hybrid methods between direct and iterative solvers and allows users to benefit from the advantages of both. Lately, the growing size of simulations in electromagnetics brought to light the interest of using domain decomposition. Nonlinearity is also one of the problem specificities where the need for an efficient solver is high. This article provides a comparison between two techniques of domain decomposition for solving 3-D nonlinear magnetostatic problems. A contactor test case with two nonlinear materials was used to estimate the performances of both methods. |
doi_str_mv | 10.1109/TMAG.2023.3299989 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2932563911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932563911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-b134ef11536172b91c8686f030729861b9ee5dbaadc4733dda657e23afa108133</originalsourceid><addsrcrecordid>eNpdjUFOwzAURC0EEqVwAHaWWKf4-ztOzK5qaUG0BYnCtnISh6ZK42I7IBZI3IEbchIiYMVq5o1GM4ScAhsAMHW-nA-nA844DpArpVK1R3qgBESMSbVPeoxBGikhxSE58n7ToYiB9cj72G511dCxye12Z30VKtvQ0jqK0ZgubFNXjdGOzvVTY4L1QYcqp3fOZrXZ-gu6MK_BNl8fnzfurbYvnbnP162jj8b51tMf6MJ_NTo3YW0Lf0wOSl17c_KnffIwuVyOrqLZ7fR6NJxFOU9EiDJAYUqAGCUkPFOQpzKVJUOWcJVKyJQxcZFpXeQiQSwKLePEcNSlBpYCYp-c_e7unH1ujQ-rjW1d012uuEIeS1QA-A3tYmXs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932563911</pqid></control><display><type>article</type><title>Domain Decomposition for 3-D Nonlinear Magnetostatic Problems: Newton–Krylov–Schur Versus Schur–Newton–Krylov Methods</title><source>IEEE Electronic Library (IEL)</source><creator>Ghenai, Mohamed I ; Perrussel, Ronan ; Chadebec, Olivier ; Vi, Frederic ; Jean-Michel Guichon ; Meunier, Gerard ; Siau, Jonathan</creator><creatorcontrib>Ghenai, Mohamed I ; Perrussel, Ronan ; Chadebec, Olivier ; Vi, Frederic ; Jean-Michel Guichon ; Meunier, Gerard ; Siau, Jonathan</creatorcontrib><description>Domain decomposition is a strategy designed to be used on parallel machines. This strategy leads to hybrid methods between direct and iterative solvers and allows users to benefit from the advantages of both. Lately, the growing size of simulations in electromagnetics brought to light the interest of using domain decomposition. Nonlinearity is also one of the problem specificities where the need for an efficient solver is high. This article provides a comparison between two techniques of domain decomposition for solving 3-D nonlinear magnetostatic problems. A contactor test case with two nonlinear materials was used to estimate the performances of both methods.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2023.3299989</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Domain decomposition methods ; Nonlinearity ; Solvers</subject><ispartof>IEEE transactions on magnetics, 2024-03, Vol.60 (3), p.1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c274t-b134ef11536172b91c8686f030729861b9ee5dbaadc4733dda657e23afa108133</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Ghenai, Mohamed I</creatorcontrib><creatorcontrib>Perrussel, Ronan</creatorcontrib><creatorcontrib>Chadebec, Olivier</creatorcontrib><creatorcontrib>Vi, Frederic</creatorcontrib><creatorcontrib>Jean-Michel Guichon</creatorcontrib><creatorcontrib>Meunier, Gerard</creatorcontrib><creatorcontrib>Siau, Jonathan</creatorcontrib><title>Domain Decomposition for 3-D Nonlinear Magnetostatic Problems: Newton–Krylov–Schur Versus Schur–Newton–Krylov Methods</title><title>IEEE transactions on magnetics</title><description>Domain decomposition is a strategy designed to be used on parallel machines. This strategy leads to hybrid methods between direct and iterative solvers and allows users to benefit from the advantages of both. Lately, the growing size of simulations in electromagnetics brought to light the interest of using domain decomposition. Nonlinearity is also one of the problem specificities where the need for an efficient solver is high. This article provides a comparison between two techniques of domain decomposition for solving 3-D nonlinear magnetostatic problems. A contactor test case with two nonlinear materials was used to estimate the performances of both methods.</description><subject>Domain decomposition methods</subject><subject>Nonlinearity</subject><subject>Solvers</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdjUFOwzAURC0EEqVwAHaWWKf4-ztOzK5qaUG0BYnCtnISh6ZK42I7IBZI3IEbchIiYMVq5o1GM4ScAhsAMHW-nA-nA844DpArpVK1R3qgBESMSbVPeoxBGikhxSE58n7ToYiB9cj72G511dCxye12Z30VKtvQ0jqK0ZgubFNXjdGOzvVTY4L1QYcqp3fOZrXZ-gu6MK_BNl8fnzfurbYvnbnP162jj8b51tMf6MJ_NTo3YW0Lf0wOSl17c_KnffIwuVyOrqLZ7fR6NJxFOU9EiDJAYUqAGCUkPFOQpzKVJUOWcJVKyJQxcZFpXeQiQSwKLePEcNSlBpYCYp-c_e7unH1ujQ-rjW1d012uuEIeS1QA-A3tYmXs</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Ghenai, Mohamed I</creator><creator>Perrussel, Ronan</creator><creator>Chadebec, Olivier</creator><creator>Vi, Frederic</creator><creator>Jean-Michel Guichon</creator><creator>Meunier, Gerard</creator><creator>Siau, Jonathan</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20240301</creationdate><title>Domain Decomposition for 3-D Nonlinear Magnetostatic Problems: Newton–Krylov–Schur Versus Schur–Newton–Krylov Methods</title><author>Ghenai, Mohamed I ; Perrussel, Ronan ; Chadebec, Olivier ; Vi, Frederic ; Jean-Michel Guichon ; Meunier, Gerard ; Siau, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-b134ef11536172b91c8686f030729861b9ee5dbaadc4733dda657e23afa108133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Domain decomposition methods</topic><topic>Nonlinearity</topic><topic>Solvers</topic><toplevel>online_resources</toplevel><creatorcontrib>Ghenai, Mohamed I</creatorcontrib><creatorcontrib>Perrussel, Ronan</creatorcontrib><creatorcontrib>Chadebec, Olivier</creatorcontrib><creatorcontrib>Vi, Frederic</creatorcontrib><creatorcontrib>Jean-Michel Guichon</creatorcontrib><creatorcontrib>Meunier, Gerard</creatorcontrib><creatorcontrib>Siau, Jonathan</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghenai, Mohamed I</au><au>Perrussel, Ronan</au><au>Chadebec, Olivier</au><au>Vi, Frederic</au><au>Jean-Michel Guichon</au><au>Meunier, Gerard</au><au>Siau, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain Decomposition for 3-D Nonlinear Magnetostatic Problems: Newton–Krylov–Schur Versus Schur–Newton–Krylov Methods</atitle><jtitle>IEEE transactions on magnetics</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>60</volume><issue>3</issue><spage>1</spage><pages>1-</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><abstract>Domain decomposition is a strategy designed to be used on parallel machines. This strategy leads to hybrid methods between direct and iterative solvers and allows users to benefit from the advantages of both. Lately, the growing size of simulations in electromagnetics brought to light the interest of using domain decomposition. Nonlinearity is also one of the problem specificities where the need for an efficient solver is high. This article provides a comparison between two techniques of domain decomposition for solving 3-D nonlinear magnetostatic problems. A contactor test case with two nonlinear materials was used to estimate the performances of both methods.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TMAG.2023.3299989</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2024-03, Vol.60 (3), p.1 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_proquest_journals_2932563911 |
source | IEEE Electronic Library (IEL) |
subjects | Domain decomposition methods Nonlinearity Solvers |
title | Domain Decomposition for 3-D Nonlinear Magnetostatic Problems: Newton–Krylov–Schur Versus Schur–Newton–Krylov Methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain%20Decomposition%20for%203-D%20Nonlinear%20Magnetostatic%20Problems:%20Newton%E2%80%93Krylov%E2%80%93Schur%20Versus%20Schur%E2%80%93Newton%E2%80%93Krylov%20Methods&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Ghenai,%20Mohamed%20I&rft.date=2024-03-01&rft.volume=60&rft.issue=3&rft.spage=1&rft.pages=1-&rft.issn=0018-9464&rft.eissn=1941-0069&rft_id=info:doi/10.1109/TMAG.2023.3299989&rft_dat=%3Cproquest%3E2932563911%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932563911&rft_id=info:pmid/&rfr_iscdi=true |