Domain Decomposition for 3-D Nonlinear Magnetostatic Problems: Newton–Krylov–Schur Versus Schur–Newton–Krylov Methods

Domain decomposition is a strategy designed to be used on parallel machines. This strategy leads to hybrid methods between direct and iterative solvers and allows users to benefit from the advantages of both. Lately, the growing size of simulations in electromagnetics brought to light the interest o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2024-03, Vol.60 (3), p.1
Hauptverfasser: Ghenai, Mohamed I, Perrussel, Ronan, Chadebec, Olivier, Vi, Frederic, Jean-Michel Guichon, Meunier, Gerard, Siau, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 60
creator Ghenai, Mohamed I
Perrussel, Ronan
Chadebec, Olivier
Vi, Frederic
Jean-Michel Guichon
Meunier, Gerard
Siau, Jonathan
description Domain decomposition is a strategy designed to be used on parallel machines. This strategy leads to hybrid methods between direct and iterative solvers and allows users to benefit from the advantages of both. Lately, the growing size of simulations in electromagnetics brought to light the interest of using domain decomposition. Nonlinearity is also one of the problem specificities where the need for an efficient solver is high. This article provides a comparison between two techniques of domain decomposition for solving 3-D nonlinear magnetostatic problems. A contactor test case with two nonlinear materials was used to estimate the performances of both methods.
doi_str_mv 10.1109/TMAG.2023.3299989
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2932563911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932563911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-b134ef11536172b91c8686f030729861b9ee5dbaadc4733dda657e23afa108133</originalsourceid><addsrcrecordid>eNpdjUFOwzAURC0EEqVwAHaWWKf4-ztOzK5qaUG0BYnCtnISh6ZK42I7IBZI3IEbchIiYMVq5o1GM4ScAhsAMHW-nA-nA844DpArpVK1R3qgBESMSbVPeoxBGikhxSE58n7ToYiB9cj72G511dCxye12Z30VKtvQ0jqK0ZgubFNXjdGOzvVTY4L1QYcqp3fOZrXZ-gu6MK_BNl8fnzfurbYvnbnP162jj8b51tMf6MJ_NTo3YW0Lf0wOSl17c_KnffIwuVyOrqLZ7fR6NJxFOU9EiDJAYUqAGCUkPFOQpzKVJUOWcJVKyJQxcZFpXeQiQSwKLePEcNSlBpYCYp-c_e7unH1ujQ-rjW1d012uuEIeS1QA-A3tYmXs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932563911</pqid></control><display><type>article</type><title>Domain Decomposition for 3-D Nonlinear Magnetostatic Problems: Newton–Krylov–Schur Versus Schur–Newton–Krylov Methods</title><source>IEEE Electronic Library (IEL)</source><creator>Ghenai, Mohamed I ; Perrussel, Ronan ; Chadebec, Olivier ; Vi, Frederic ; Jean-Michel Guichon ; Meunier, Gerard ; Siau, Jonathan</creator><creatorcontrib>Ghenai, Mohamed I ; Perrussel, Ronan ; Chadebec, Olivier ; Vi, Frederic ; Jean-Michel Guichon ; Meunier, Gerard ; Siau, Jonathan</creatorcontrib><description>Domain decomposition is a strategy designed to be used on parallel machines. This strategy leads to hybrid methods between direct and iterative solvers and allows users to benefit from the advantages of both. Lately, the growing size of simulations in electromagnetics brought to light the interest of using domain decomposition. Nonlinearity is also one of the problem specificities where the need for an efficient solver is high. This article provides a comparison between two techniques of domain decomposition for solving 3-D nonlinear magnetostatic problems. A contactor test case with two nonlinear materials was used to estimate the performances of both methods.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2023.3299989</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Domain decomposition methods ; Nonlinearity ; Solvers</subject><ispartof>IEEE transactions on magnetics, 2024-03, Vol.60 (3), p.1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c274t-b134ef11536172b91c8686f030729861b9ee5dbaadc4733dda657e23afa108133</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Ghenai, Mohamed I</creatorcontrib><creatorcontrib>Perrussel, Ronan</creatorcontrib><creatorcontrib>Chadebec, Olivier</creatorcontrib><creatorcontrib>Vi, Frederic</creatorcontrib><creatorcontrib>Jean-Michel Guichon</creatorcontrib><creatorcontrib>Meunier, Gerard</creatorcontrib><creatorcontrib>Siau, Jonathan</creatorcontrib><title>Domain Decomposition for 3-D Nonlinear Magnetostatic Problems: Newton–Krylov–Schur Versus Schur–Newton–Krylov Methods</title><title>IEEE transactions on magnetics</title><description>Domain decomposition is a strategy designed to be used on parallel machines. This strategy leads to hybrid methods between direct and iterative solvers and allows users to benefit from the advantages of both. Lately, the growing size of simulations in electromagnetics brought to light the interest of using domain decomposition. Nonlinearity is also one of the problem specificities where the need for an efficient solver is high. This article provides a comparison between two techniques of domain decomposition for solving 3-D nonlinear magnetostatic problems. A contactor test case with two nonlinear materials was used to estimate the performances of both methods.</description><subject>Domain decomposition methods</subject><subject>Nonlinearity</subject><subject>Solvers</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdjUFOwzAURC0EEqVwAHaWWKf4-ztOzK5qaUG0BYnCtnISh6ZK42I7IBZI3IEbchIiYMVq5o1GM4ScAhsAMHW-nA-nA844DpArpVK1R3qgBESMSbVPeoxBGikhxSE58n7ToYiB9cj72G511dCxye12Z30VKtvQ0jqK0ZgubFNXjdGOzvVTY4L1QYcqp3fOZrXZ-gu6MK_BNl8fnzfurbYvnbnP162jj8b51tMf6MJ_NTo3YW0Lf0wOSl17c_KnffIwuVyOrqLZ7fR6NJxFOU9EiDJAYUqAGCUkPFOQpzKVJUOWcJVKyJQxcZFpXeQiQSwKLePEcNSlBpYCYp-c_e7unH1ujQ-rjW1d012uuEIeS1QA-A3tYmXs</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Ghenai, Mohamed I</creator><creator>Perrussel, Ronan</creator><creator>Chadebec, Olivier</creator><creator>Vi, Frederic</creator><creator>Jean-Michel Guichon</creator><creator>Meunier, Gerard</creator><creator>Siau, Jonathan</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20240301</creationdate><title>Domain Decomposition for 3-D Nonlinear Magnetostatic Problems: Newton–Krylov–Schur Versus Schur–Newton–Krylov Methods</title><author>Ghenai, Mohamed I ; Perrussel, Ronan ; Chadebec, Olivier ; Vi, Frederic ; Jean-Michel Guichon ; Meunier, Gerard ; Siau, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-b134ef11536172b91c8686f030729861b9ee5dbaadc4733dda657e23afa108133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Domain decomposition methods</topic><topic>Nonlinearity</topic><topic>Solvers</topic><toplevel>online_resources</toplevel><creatorcontrib>Ghenai, Mohamed I</creatorcontrib><creatorcontrib>Perrussel, Ronan</creatorcontrib><creatorcontrib>Chadebec, Olivier</creatorcontrib><creatorcontrib>Vi, Frederic</creatorcontrib><creatorcontrib>Jean-Michel Guichon</creatorcontrib><creatorcontrib>Meunier, Gerard</creatorcontrib><creatorcontrib>Siau, Jonathan</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghenai, Mohamed I</au><au>Perrussel, Ronan</au><au>Chadebec, Olivier</au><au>Vi, Frederic</au><au>Jean-Michel Guichon</au><au>Meunier, Gerard</au><au>Siau, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain Decomposition for 3-D Nonlinear Magnetostatic Problems: Newton–Krylov–Schur Versus Schur–Newton–Krylov Methods</atitle><jtitle>IEEE transactions on magnetics</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>60</volume><issue>3</issue><spage>1</spage><pages>1-</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><abstract>Domain decomposition is a strategy designed to be used on parallel machines. This strategy leads to hybrid methods between direct and iterative solvers and allows users to benefit from the advantages of both. Lately, the growing size of simulations in electromagnetics brought to light the interest of using domain decomposition. Nonlinearity is also one of the problem specificities where the need for an efficient solver is high. This article provides a comparison between two techniques of domain decomposition for solving 3-D nonlinear magnetostatic problems. A contactor test case with two nonlinear materials was used to estimate the performances of both methods.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TMAG.2023.3299989</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2024-03, Vol.60 (3), p.1
issn 0018-9464
1941-0069
language eng
recordid cdi_proquest_journals_2932563911
source IEEE Electronic Library (IEL)
subjects Domain decomposition methods
Nonlinearity
Solvers
title Domain Decomposition for 3-D Nonlinear Magnetostatic Problems: Newton–Krylov–Schur Versus Schur–Newton–Krylov Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain%20Decomposition%20for%203-D%20Nonlinear%20Magnetostatic%20Problems:%20Newton%E2%80%93Krylov%E2%80%93Schur%20Versus%20Schur%E2%80%93Newton%E2%80%93Krylov%20Methods&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Ghenai,%20Mohamed%20I&rft.date=2024-03-01&rft.volume=60&rft.issue=3&rft.spage=1&rft.pages=1-&rft.issn=0018-9464&rft.eissn=1941-0069&rft_id=info:doi/10.1109/TMAG.2023.3299989&rft_dat=%3Cproquest%3E2932563911%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932563911&rft_id=info:pmid/&rfr_iscdi=true