A Performance Comparison of Supervised and Unsupervised Image Segmentation Methods

Image processing plays a vital role in many recent computer applications in the association with machine learning technology. The supervised training on dataset of features can only be successful if the segmentation process is accurate in the computer vision phase. The term segmentation is the proce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN computer science 2020-05, Vol.1 (3), p.122, Article 122
Hauptverfasser: Baby, Diana, Devaraj, Sujitha Juliet, Mathew, Soumya, Anishin Raj, M. M., Karthikeyan, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 122
container_title SN computer science
container_volume 1
creator Baby, Diana
Devaraj, Sujitha Juliet
Mathew, Soumya
Anishin Raj, M. M.
Karthikeyan, B.
description Image processing plays a vital role in many recent computer applications in the association with machine learning technology. The supervised training on dataset of features can only be successful if the segmentation process is accurate in the computer vision phase. The term segmentation is the process of extracting or identification of distinguishable regions in an image. This is performed based on the properties of image pixel intensity values and their proximities. This paper mainly focuses on an investigation of various latest image segmentation techniques performed in the field of computer vision and image processing. Segmentation plays a vital role in computer vision since any fault in segmentation will led to inaccurate extraction of features which results in wrong prediction of the decision support systems.
doi_str_mv 10.1007/s42979-020-00136-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932505601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932505601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2789-9a72006af8784b895dc1f5f10ab3ffc7cd743015b1a89946032bc75d5458865b3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKcFz9FJdvN1LMWPQkWxFryF7G5St7jJmmwF_71rV-jN0wzD-8wwD0KXBK4JgLhJBVVCYaCAAUjOsTpBE8o5wVKBOD30FCvF3s7RLKUdAFAGRcHZBL3Ms2cbXYit8ZXNFqHtTGxS8Flw2Xrf2fjVJFtnxtfZxqfjYNmarc3Wdtta35u-GYhH27-HOl2gM2c-kp391Sna3N2-Lh7w6ul-uZivcEWFVFgZQQG4cVLIopSK1RVxzBEwZe5cJapaFDkQVhIjlSo45LSsBKtZwaTkrMyn6Grc28Xwubep17uwj344qanKhw8ZH2xMER1TVQwpRet0F5vWxG9NQP_q06M-PejTB31aDVA-QmkI-62Nx9X_UD_vaXHl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932505601</pqid></control><display><type>article</type><title>A Performance Comparison of Supervised and Unsupervised Image Segmentation Methods</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Baby, Diana ; Devaraj, Sujitha Juliet ; Mathew, Soumya ; Anishin Raj, M. M. ; Karthikeyan, B.</creator><creatorcontrib>Baby, Diana ; Devaraj, Sujitha Juliet ; Mathew, Soumya ; Anishin Raj, M. M. ; Karthikeyan, B.</creatorcontrib><description>Image processing plays a vital role in many recent computer applications in the association with machine learning technology. The supervised training on dataset of features can only be successful if the segmentation process is accurate in the computer vision phase. The term segmentation is the process of extracting or identification of distinguishable regions in an image. This is performed based on the properties of image pixel intensity values and their proximities. This paper mainly focuses on an investigation of various latest image segmentation techniques performed in the field of computer vision and image processing. Segmentation plays a vital role in computer vision since any fault in segmentation will led to inaccurate extraction of features which results in wrong prediction of the decision support systems.</description><identifier>ISSN: 2662-995X</identifier><identifier>EISSN: 2661-8907</identifier><identifier>DOI: 10.1007/s42979-020-00136-9</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Advances in Computational Approaches for Artificial Intelligence ; Algorithms ; Clustering ; Computer Imaging ; Computer Science ; Computer Systems Organization and Communication Networks ; Computer vision ; Data Structures and Information Theory ; Decision support systems ; Dictionaries ; Image Processing ; Image segmentation ; Information Systems and Communication Service ; IoT and Cloud Applications ; Machine learning ; Methods ; Pattern Recognition and Graphics ; Software Engineering/Programming and Operating Systems ; Survey Article ; Vision</subject><ispartof>SN computer science, 2020-05, Vol.1 (3), p.122, Article 122</ispartof><rights>Springer Nature Singapore Pte Ltd 2020</rights><rights>Springer Nature Singapore Pte Ltd 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2789-9a72006af8784b895dc1f5f10ab3ffc7cd743015b1a89946032bc75d5458865b3</citedby><cites>FETCH-LOGICAL-c2789-9a72006af8784b895dc1f5f10ab3ffc7cd743015b1a89946032bc75d5458865b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42979-020-00136-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2932505601?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Baby, Diana</creatorcontrib><creatorcontrib>Devaraj, Sujitha Juliet</creatorcontrib><creatorcontrib>Mathew, Soumya</creatorcontrib><creatorcontrib>Anishin Raj, M. M.</creatorcontrib><creatorcontrib>Karthikeyan, B.</creatorcontrib><title>A Performance Comparison of Supervised and Unsupervised Image Segmentation Methods</title><title>SN computer science</title><addtitle>SN COMPUT. SCI</addtitle><description>Image processing plays a vital role in many recent computer applications in the association with machine learning technology. The supervised training on dataset of features can only be successful if the segmentation process is accurate in the computer vision phase. The term segmentation is the process of extracting or identification of distinguishable regions in an image. This is performed based on the properties of image pixel intensity values and their proximities. This paper mainly focuses on an investigation of various latest image segmentation techniques performed in the field of computer vision and image processing. Segmentation plays a vital role in computer vision since any fault in segmentation will led to inaccurate extraction of features which results in wrong prediction of the decision support systems.</description><subject>Advances in Computational Approaches for Artificial Intelligence</subject><subject>Algorithms</subject><subject>Clustering</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Computer vision</subject><subject>Data Structures and Information Theory</subject><subject>Decision support systems</subject><subject>Dictionaries</subject><subject>Image Processing</subject><subject>Image segmentation</subject><subject>Information Systems and Communication Service</subject><subject>IoT and Cloud Applications</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Pattern Recognition and Graphics</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Survey Article</subject><subject>Vision</subject><issn>2662-995X</issn><issn>2661-8907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMoWGr_gKcFz9FJdvN1LMWPQkWxFryF7G5St7jJmmwF_71rV-jN0wzD-8wwD0KXBK4JgLhJBVVCYaCAAUjOsTpBE8o5wVKBOD30FCvF3s7RLKUdAFAGRcHZBL3Ms2cbXYit8ZXNFqHtTGxS8Flw2Xrf2fjVJFtnxtfZxqfjYNmarc3Wdtta35u-GYhH27-HOl2gM2c-kp391Sna3N2-Lh7w6ul-uZivcEWFVFgZQQG4cVLIopSK1RVxzBEwZe5cJapaFDkQVhIjlSo45LSsBKtZwaTkrMyn6Grc28Xwubep17uwj344qanKhw8ZH2xMER1TVQwpRet0F5vWxG9NQP_q06M-PejTB31aDVA-QmkI-62Nx9X_UD_vaXHl</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Baby, Diana</creator><creator>Devaraj, Sujitha Juliet</creator><creator>Mathew, Soumya</creator><creator>Anishin Raj, M. M.</creator><creator>Karthikeyan, B.</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20200501</creationdate><title>A Performance Comparison of Supervised and Unsupervised Image Segmentation Methods</title><author>Baby, Diana ; Devaraj, Sujitha Juliet ; Mathew, Soumya ; Anishin Raj, M. M. ; Karthikeyan, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2789-9a72006af8784b895dc1f5f10ab3ffc7cd743015b1a89946032bc75d5458865b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Advances in Computational Approaches for Artificial Intelligence</topic><topic>Algorithms</topic><topic>Clustering</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Computer vision</topic><topic>Data Structures and Information Theory</topic><topic>Decision support systems</topic><topic>Dictionaries</topic><topic>Image Processing</topic><topic>Image segmentation</topic><topic>Information Systems and Communication Service</topic><topic>IoT and Cloud Applications</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Pattern Recognition and Graphics</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Survey Article</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baby, Diana</creatorcontrib><creatorcontrib>Devaraj, Sujitha Juliet</creatorcontrib><creatorcontrib>Mathew, Soumya</creatorcontrib><creatorcontrib>Anishin Raj, M. M.</creatorcontrib><creatorcontrib>Karthikeyan, B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SN computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baby, Diana</au><au>Devaraj, Sujitha Juliet</au><au>Mathew, Soumya</au><au>Anishin Raj, M. M.</au><au>Karthikeyan, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Performance Comparison of Supervised and Unsupervised Image Segmentation Methods</atitle><jtitle>SN computer science</jtitle><stitle>SN COMPUT. SCI</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>1</volume><issue>3</issue><spage>122</spage><pages>122-</pages><artnum>122</artnum><issn>2662-995X</issn><eissn>2661-8907</eissn><abstract>Image processing plays a vital role in many recent computer applications in the association with machine learning technology. The supervised training on dataset of features can only be successful if the segmentation process is accurate in the computer vision phase. The term segmentation is the process of extracting or identification of distinguishable regions in an image. This is performed based on the properties of image pixel intensity values and their proximities. This paper mainly focuses on an investigation of various latest image segmentation techniques performed in the field of computer vision and image processing. Segmentation plays a vital role in computer vision since any fault in segmentation will led to inaccurate extraction of features which results in wrong prediction of the decision support systems.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s42979-020-00136-9</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2662-995X
ispartof SN computer science, 2020-05, Vol.1 (3), p.122, Article 122
issn 2662-995X
2661-8907
language eng
recordid cdi_proquest_journals_2932505601
source Springer Nature - Complete Springer Journals; ProQuest Central
subjects Advances in Computational Approaches for Artificial Intelligence
Algorithms
Clustering
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Computer vision
Data Structures and Information Theory
Decision support systems
Dictionaries
Image Processing
Image segmentation
Information Systems and Communication Service
IoT and Cloud Applications
Machine learning
Methods
Pattern Recognition and Graphics
Software Engineering/Programming and Operating Systems
Survey Article
Vision
title A Performance Comparison of Supervised and Unsupervised Image Segmentation Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T12%3A36%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Performance%20Comparison%20of%20Supervised%20and%20Unsupervised%20Image%20Segmentation%20Methods&rft.jtitle=SN%20computer%20science&rft.au=Baby,%20Diana&rft.date=2020-05-01&rft.volume=1&rft.issue=3&rft.spage=122&rft.pages=122-&rft.artnum=122&rft.issn=2662-995X&rft.eissn=2661-8907&rft_id=info:doi/10.1007/s42979-020-00136-9&rft_dat=%3Cproquest_cross%3E2932505601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932505601&rft_id=info:pmid/&rfr_iscdi=true