Characterization of the Hot Deformation Behavior of Cu-Cr-Zr Alloy by Processing Maps
Hot deformation behavior of the Cu-Cr-Zr alloy was investigated using hot compressive tests in the tem- perature range of 650-850℃ and strain rate range of 0.001-10 s-1. The constitutive equation of the alloy based on the hyperbolic-sine equation was established to characterize the flow stress as a...
Gespeichert in:
Veröffentlicht in: | Acta metallurgica sinica : English letters 2016-05, Vol.29 (5), p.422-430 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 430 |
---|---|
container_issue | 5 |
container_start_page | 422 |
container_title | Acta metallurgica sinica : English letters |
container_volume | 29 |
creator | Zhang, Yi Sun, Hui-Li Volinsky, Alex A. Tian, Bao-Hong Chai, Zhe Liu, Ping Liu, Yong |
description | Hot deformation behavior of the Cu-Cr-Zr alloy was investigated using hot compressive tests in the tem- perature range of 650-850℃ and strain rate range of 0.001-10 s-1. The constitutive equation of the alloy based on the hyperbolic-sine equation was established to characterize the flow stress as a function of strain rate and deformation temperature. The critical conditions for the occurrence of dynamic recrystallization were determined based on the alloy strain hardening rate curves. Based on the dynamic material model, the processing maps at the strains of 0.3, 0.4 and 0.5 were obtained. When the true strain was 0.5, greater power dissipation efficiency was observed at 800-850 ℃ and under 0.001-0.1 s-1, with the peak efficiency of 47%. The evolution of DRX microstructure strongly depends on the deformation temperature and the strain rate. Based on the processing maps and microstructure evolution, the optimal hot working conditions for the Cu-Cr-Zr alloy are in the temperature range of 800-850 ℃ and the strain rate range of 0.001-0.1 s-1. |
doi_str_mv | 10.1007/s40195-016-0404-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932498748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>668993012</cqvip_id><sourcerecordid>2932498748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-8693ee89b12c6ffa9501b53a38b2c30753213808ddddf6a40b27b2fc1bee70813</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwAdgsmA0-20nssYQ_RSqCgS4slhPsNlUbt3aKVD49rlLBxi2nu_u9e9JD6BLoDVBa3EZBQWWEQk6ooILwIzRgoAQBJtUxGiQoJwUoOEVnMS7SxERWDNC0nJtg6s6G5tt0jW-xd7ibWzz2Hb63zodVv76zc_PV-LC_l1tSBvIR8Gi59Dtc7fBb8LWNsWln-MWs4zk6cWYZ7cWhD9H08eG9HJPJ69NzOZqQmsu8IzJX3FqpKmB17pxRGYUq44bLitWcFhlnwCWVn6lcbgStWFExV0NlbUEl8CG67v-ug99sbez0wm9Dmyw1U5wJJQshEwU9VQcfY7BOr0OzMmGngep9erpPT6f09D49zZOG9ZqY2HZmw9_n_0RXB6O5b2ebpPt1ynOpFKfA-A-MPXxs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932498748</pqid></control><display><type>article</type><title>Characterization of the Hot Deformation Behavior of Cu-Cr-Zr Alloy by Processing Maps</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Zhang, Yi ; Sun, Hui-Li ; Volinsky, Alex A. ; Tian, Bao-Hong ; Chai, Zhe ; Liu, Ping ; Liu, Yong</creator><creatorcontrib>Zhang, Yi ; Sun, Hui-Li ; Volinsky, Alex A. ; Tian, Bao-Hong ; Chai, Zhe ; Liu, Ping ; Liu, Yong</creatorcontrib><description>Hot deformation behavior of the Cu-Cr-Zr alloy was investigated using hot compressive tests in the tem- perature range of 650-850℃ and strain rate range of 0.001-10 s-1. The constitutive equation of the alloy based on the hyperbolic-sine equation was established to characterize the flow stress as a function of strain rate and deformation temperature. The critical conditions for the occurrence of dynamic recrystallization were determined based on the alloy strain hardening rate curves. Based on the dynamic material model, the processing maps at the strains of 0.3, 0.4 and 0.5 were obtained. When the true strain was 0.5, greater power dissipation efficiency was observed at 800-850 ℃ and under 0.001-0.1 s-1, with the peak efficiency of 47%. The evolution of DRX microstructure strongly depends on the deformation temperature and the strain rate. Based on the processing maps and microstructure evolution, the optimal hot working conditions for the Cu-Cr-Zr alloy are in the temperature range of 800-850 ℃ and the strain rate range of 0.001-0.1 s-1.</description><identifier>ISSN: 1006-7191</identifier><identifier>EISSN: 2194-1289</identifier><identifier>DOI: 10.1007/s40195-016-0404-3</identifier><language>eng</language><publisher>Beijing: The Chinese Society for Metals</publisher><subject>Alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chromium ; Constitutive equations ; Constitutive relationships ; Copper ; Copper base alloys ; Corrosion and Coatings ; Cu-Cr-Zr合金 ; Deformation ; Dynamic recrystallization ; Energy ; Energy dissipation ; Evolution ; Hardening rate ; Hot working ; Materials Science ; Metallic Materials ; Microstructure ; Nanotechnology ; Organometallic Chemistry ; Process mapping ; Spectroscopy/Spectrometry ; Strain hardening ; Strain rate ; Temperature ; Tribology ; Trigonometric functions ; True strain ; Yield strength ; Zirconium ; 加工图 ; 动态再结晶 ; 应变速率 ; 温度范围 ; 热变形行为 ; 表征 ; 铜铬锆合金</subject><ispartof>Acta metallurgica sinica : English letters, 2016-05, Vol.29 (5), p.422-430</ispartof><rights>The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2016</rights><rights>The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-8693ee89b12c6ffa9501b53a38b2c30753213808ddddf6a40b27b2fc1bee70813</citedby><cites>FETCH-LOGICAL-c386t-8693ee89b12c6ffa9501b53a38b2c30753213808ddddf6a40b27b2fc1bee70813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86672X/86672X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40195-016-0404-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2932498748?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Sun, Hui-Li</creatorcontrib><creatorcontrib>Volinsky, Alex A.</creatorcontrib><creatorcontrib>Tian, Bao-Hong</creatorcontrib><creatorcontrib>Chai, Zhe</creatorcontrib><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><title>Characterization of the Hot Deformation Behavior of Cu-Cr-Zr Alloy by Processing Maps</title><title>Acta metallurgica sinica : English letters</title><addtitle>Acta Metall. Sin. (Engl. Lett.)</addtitle><addtitle>Acta Metallurgica Sinica(English Letters)</addtitle><description>Hot deformation behavior of the Cu-Cr-Zr alloy was investigated using hot compressive tests in the tem- perature range of 650-850℃ and strain rate range of 0.001-10 s-1. The constitutive equation of the alloy based on the hyperbolic-sine equation was established to characterize the flow stress as a function of strain rate and deformation temperature. The critical conditions for the occurrence of dynamic recrystallization were determined based on the alloy strain hardening rate curves. Based on the dynamic material model, the processing maps at the strains of 0.3, 0.4 and 0.5 were obtained. When the true strain was 0.5, greater power dissipation efficiency was observed at 800-850 ℃ and under 0.001-0.1 s-1, with the peak efficiency of 47%. The evolution of DRX microstructure strongly depends on the deformation temperature and the strain rate. Based on the processing maps and microstructure evolution, the optimal hot working conditions for the Cu-Cr-Zr alloy are in the temperature range of 800-850 ℃ and the strain rate range of 0.001-0.1 s-1.</description><subject>Alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chromium</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Copper</subject><subject>Copper base alloys</subject><subject>Corrosion and Coatings</subject><subject>Cu-Cr-Zr合金</subject><subject>Deformation</subject><subject>Dynamic recrystallization</subject><subject>Energy</subject><subject>Energy dissipation</subject><subject>Evolution</subject><subject>Hardening rate</subject><subject>Hot working</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Organometallic Chemistry</subject><subject>Process mapping</subject><subject>Spectroscopy/Spectrometry</subject><subject>Strain hardening</subject><subject>Strain rate</subject><subject>Temperature</subject><subject>Tribology</subject><subject>Trigonometric functions</subject><subject>True strain</subject><subject>Yield strength</subject><subject>Zirconium</subject><subject>加工图</subject><subject>动态再结晶</subject><subject>应变速率</subject><subject>温度范围</subject><subject>热变形行为</subject><subject>表征</subject><subject>铜铬锆合金</subject><issn>1006-7191</issn><issn>2194-1289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kD9PwzAQxS0EEqXwAdgsmA0-20nssYQ_RSqCgS4slhPsNlUbt3aKVD49rlLBxi2nu_u9e9JD6BLoDVBa3EZBQWWEQk6ooILwIzRgoAQBJtUxGiQoJwUoOEVnMS7SxERWDNC0nJtg6s6G5tt0jW-xd7ibWzz2Hb63zodVv76zc_PV-LC_l1tSBvIR8Gi59Dtc7fBb8LWNsWln-MWs4zk6cWYZ7cWhD9H08eG9HJPJ69NzOZqQmsu8IzJX3FqpKmB17pxRGYUq44bLitWcFhlnwCWVn6lcbgStWFExV0NlbUEl8CG67v-ug99sbez0wm9Dmyw1U5wJJQshEwU9VQcfY7BOr0OzMmGngep9erpPT6f09D49zZOG9ZqY2HZmw9_n_0RXB6O5b2ebpPt1ynOpFKfA-A-MPXxs</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Zhang, Yi</creator><creator>Sun, Hui-Li</creator><creator>Volinsky, Alex A.</creator><creator>Tian, Bao-Hong</creator><creator>Chai, Zhe</creator><creator>Liu, Ping</creator><creator>Liu, Yong</creator><general>The Chinese Society for Metals</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20160501</creationdate><title>Characterization of the Hot Deformation Behavior of Cu-Cr-Zr Alloy by Processing Maps</title><author>Zhang, Yi ; Sun, Hui-Li ; Volinsky, Alex A. ; Tian, Bao-Hong ; Chai, Zhe ; Liu, Ping ; Liu, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-8693ee89b12c6ffa9501b53a38b2c30753213808ddddf6a40b27b2fc1bee70813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chromium</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Copper</topic><topic>Copper base alloys</topic><topic>Corrosion and Coatings</topic><topic>Cu-Cr-Zr合金</topic><topic>Deformation</topic><topic>Dynamic recrystallization</topic><topic>Energy</topic><topic>Energy dissipation</topic><topic>Evolution</topic><topic>Hardening rate</topic><topic>Hot working</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Organometallic Chemistry</topic><topic>Process mapping</topic><topic>Spectroscopy/Spectrometry</topic><topic>Strain hardening</topic><topic>Strain rate</topic><topic>Temperature</topic><topic>Tribology</topic><topic>Trigonometric functions</topic><topic>True strain</topic><topic>Yield strength</topic><topic>Zirconium</topic><topic>加工图</topic><topic>动态再结晶</topic><topic>应变速率</topic><topic>温度范围</topic><topic>热变形行为</topic><topic>表征</topic><topic>铜铬锆合金</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Sun, Hui-Li</creatorcontrib><creatorcontrib>Volinsky, Alex A.</creatorcontrib><creatorcontrib>Tian, Bao-Hong</creatorcontrib><creatorcontrib>Chai, Zhe</creatorcontrib><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Acta metallurgica sinica : English letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yi</au><au>Sun, Hui-Li</au><au>Volinsky, Alex A.</au><au>Tian, Bao-Hong</au><au>Chai, Zhe</au><au>Liu, Ping</au><au>Liu, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of the Hot Deformation Behavior of Cu-Cr-Zr Alloy by Processing Maps</atitle><jtitle>Acta metallurgica sinica : English letters</jtitle><stitle>Acta Metall. Sin. (Engl. Lett.)</stitle><addtitle>Acta Metallurgica Sinica(English Letters)</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>29</volume><issue>5</issue><spage>422</spage><epage>430</epage><pages>422-430</pages><issn>1006-7191</issn><eissn>2194-1289</eissn><abstract>Hot deformation behavior of the Cu-Cr-Zr alloy was investigated using hot compressive tests in the tem- perature range of 650-850℃ and strain rate range of 0.001-10 s-1. The constitutive equation of the alloy based on the hyperbolic-sine equation was established to characterize the flow stress as a function of strain rate and deformation temperature. The critical conditions for the occurrence of dynamic recrystallization were determined based on the alloy strain hardening rate curves. Based on the dynamic material model, the processing maps at the strains of 0.3, 0.4 and 0.5 were obtained. When the true strain was 0.5, greater power dissipation efficiency was observed at 800-850 ℃ and under 0.001-0.1 s-1, with the peak efficiency of 47%. The evolution of DRX microstructure strongly depends on the deformation temperature and the strain rate. Based on the processing maps and microstructure evolution, the optimal hot working conditions for the Cu-Cr-Zr alloy are in the temperature range of 800-850 ℃ and the strain rate range of 0.001-0.1 s-1.</abstract><cop>Beijing</cop><pub>The Chinese Society for Metals</pub><doi>10.1007/s40195-016-0404-3</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1006-7191 |
ispartof | Acta metallurgica sinica : English letters, 2016-05, Vol.29 (5), p.422-430 |
issn | 1006-7191 2194-1289 |
language | eng |
recordid | cdi_proquest_journals_2932498748 |
source | SpringerNature Journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central |
subjects | Alloys Characterization and Evaluation of Materials Chemistry and Materials Science Chromium Constitutive equations Constitutive relationships Copper Copper base alloys Corrosion and Coatings Cu-Cr-Zr合金 Deformation Dynamic recrystallization Energy Energy dissipation Evolution Hardening rate Hot working Materials Science Metallic Materials Microstructure Nanotechnology Organometallic Chemistry Process mapping Spectroscopy/Spectrometry Strain hardening Strain rate Temperature Tribology Trigonometric functions True strain Yield strength Zirconium 加工图 动态再结晶 应变速率 温度范围 热变形行为 表征 铜铬锆合金 |
title | Characterization of the Hot Deformation Behavior of Cu-Cr-Zr Alloy by Processing Maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A40%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20the%20Hot%20Deformation%20Behavior%20of%20Cu-Cr-Zr%20Alloy%20by%20Processing%20Maps&rft.jtitle=Acta%20metallurgica%20sinica%20:%20English%20letters&rft.au=Zhang,%20Yi&rft.date=2016-05-01&rft.volume=29&rft.issue=5&rft.spage=422&rft.epage=430&rft.pages=422-430&rft.issn=1006-7191&rft.eissn=2194-1289&rft_id=info:doi/10.1007/s40195-016-0404-3&rft_dat=%3Cproquest_cross%3E2932498748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932498748&rft_id=info:pmid/&rft_cqvip_id=668993012&rfr_iscdi=true |