The structure of shift-invariant subspaces of Sobolev spaces

We analyze shift-invariant spaces , subspaces of Sobolev spaces , , generated by a set of generators , , with at most countable, by the use of range functions and characterize Bessel sequences, frames, and the Riesz basis of such spaces. We also describe in terms of Gramians and their direct sum dec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and mathematical physics 2024-02, Vol.218 (2), p.177-191
Hauptverfasser: Aksentijević, A., Aleksić, S., Pilipović, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 191
container_issue 2
container_start_page 177
container_title Theoretical and mathematical physics
container_volume 218
creator Aksentijević, A.
Aleksić, S.
Pilipović, S.
description We analyze shift-invariant spaces , subspaces of Sobolev spaces , , generated by a set of generators , , with at most countable, by the use of range functions and characterize Bessel sequences, frames, and the Riesz basis of such spaces. We also describe in terms of Gramians and their direct sum decompositions. We show that belongs to if and only if its Fourier transform has the form , , is a frame, and , with . Moreover, connecting two different approaches to shift-invariant spaces and , , under the assumption that a finite number of generators belongs to , we give the characterization of elements in through the expansions with coefficients in . The corresponding assertion holds for the intersections of such spaces and their duals in the case where the generators are elements of . We then show that is the space consisting of functions whose Fourier transforms equal products of functions in and periodic smooth functions. The appropriate assertion is obtained for .
doi_str_mv 10.1134/S0040577924020016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932487093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932487093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-dce158a624ca0b4a20b86c6104e6d4ca0b10f2440ce63ad78ee9d239229022bb3</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaJgXf0B3gqeq5NJmrbgRRa_YMHDrueQpFO3y9rWpF3w39tawYN4Gnhfw3uMXXK45lzImzWAhDTLCpSAAFwdsYinmUgKIcQxiyY6mfhTdhbCblQA5Dxit5stxaH3g-sHT3FbxWFbV31SNwfja9P0cRhs6IyjMJHr1rZ7OsQzcs5OKrMPdPFzF-z14X6zfEpWL4_Py7tV4lDlfVI64mluFEpnwEqDYHPlFAdJqvzGOFQoJThSwpRZTlSUKArEAhCtFQt2Ned2vv0YKPR61w6-GV9qLATKPIOx5oLxWeV8G4KnSne-fjf-U3PQ00j6z0ijB2dPGLXNG_nf5P9NX7IMZ70</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932487093</pqid></control><display><type>article</type><title>The structure of shift-invariant subspaces of Sobolev spaces</title><source>SpringerNature Journals</source><creator>Aksentijević, A. ; Aleksić, S. ; Pilipović, S.</creator><creatorcontrib>Aksentijević, A. ; Aleksić, S. ; Pilipović, S.</creatorcontrib><description>We analyze shift-invariant spaces , subspaces of Sobolev spaces , , generated by a set of generators , , with at most countable, by the use of range functions and characterize Bessel sequences, frames, and the Riesz basis of such spaces. We also describe in terms of Gramians and their direct sum decompositions. We show that belongs to if and only if its Fourier transform has the form , , is a frame, and , with . Moreover, connecting two different approaches to shift-invariant spaces and , , under the assumption that a finite number of generators belongs to , we give the characterization of elements in through the expansions with coefficients in . The corresponding assertion holds for the intersections of such spaces and their duals in the case where the generators are elements of . We then show that is the space consisting of functions whose Fourier transforms equal products of functions in and periodic smooth functions. The appropriate assertion is obtained for .</description><identifier>ISSN: 0040-5779</identifier><identifier>EISSN: 1573-9333</identifier><identifier>DOI: 10.1134/S0040577924020016</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Applications of Mathematics ; Fourier transforms ; Gramians ; Invariants ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Sobolev space ; Subspaces ; Theoretical ; Thermal expansion</subject><ispartof>Theoretical and mathematical physics, 2024-02, Vol.218 (2), p.177-191</ispartof><rights>Pleiades Publishing, Ltd. 2024</rights><rights>Pleiades Publishing, Ltd. 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-dce158a624ca0b4a20b86c6104e6d4ca0b10f2440ce63ad78ee9d239229022bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0040577924020016$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0040577924020016$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Aksentijević, A.</creatorcontrib><creatorcontrib>Aleksić, S.</creatorcontrib><creatorcontrib>Pilipović, S.</creatorcontrib><title>The structure of shift-invariant subspaces of Sobolev spaces</title><title>Theoretical and mathematical physics</title><addtitle>Theor Math Phys</addtitle><description>We analyze shift-invariant spaces , subspaces of Sobolev spaces , , generated by a set of generators , , with at most countable, by the use of range functions and characterize Bessel sequences, frames, and the Riesz basis of such spaces. We also describe in terms of Gramians and their direct sum decompositions. We show that belongs to if and only if its Fourier transform has the form , , is a frame, and , with . Moreover, connecting two different approaches to shift-invariant spaces and , , under the assumption that a finite number of generators belongs to , we give the characterization of elements in through the expansions with coefficients in . The corresponding assertion holds for the intersections of such spaces and their duals in the case where the generators are elements of . We then show that is the space consisting of functions whose Fourier transforms equal products of functions in and periodic smooth functions. The appropriate assertion is obtained for .</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Applications of Mathematics</subject><subject>Fourier transforms</subject><subject>Gramians</subject><subject>Invariants</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Sobolev space</subject><subject>Subspaces</subject><subject>Theoretical</subject><subject>Thermal expansion</subject><issn>0040-5779</issn><issn>1573-9333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAQDaJgXf0B3gqeq5NJmrbgRRa_YMHDrueQpFO3y9rWpF3w39tawYN4Gnhfw3uMXXK45lzImzWAhDTLCpSAAFwdsYinmUgKIcQxiyY6mfhTdhbCblQA5Dxit5stxaH3g-sHT3FbxWFbV31SNwfja9P0cRhs6IyjMJHr1rZ7OsQzcs5OKrMPdPFzF-z14X6zfEpWL4_Py7tV4lDlfVI64mluFEpnwEqDYHPlFAdJqvzGOFQoJThSwpRZTlSUKArEAhCtFQt2Ned2vv0YKPR61w6-GV9qLATKPIOx5oLxWeV8G4KnSne-fjf-U3PQ00j6z0ijB2dPGLXNG_nf5P9NX7IMZ70</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Aksentijević, A.</creator><creator>Aleksić, S.</creator><creator>Pilipović, S.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>The structure of shift-invariant subspaces of Sobolev spaces</title><author>Aksentijević, A. ; Aleksić, S. ; Pilipović, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-dce158a624ca0b4a20b86c6104e6d4ca0b10f2440ce63ad78ee9d239229022bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Applications of Mathematics</topic><topic>Fourier transforms</topic><topic>Gramians</topic><topic>Invariants</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Sobolev space</topic><topic>Subspaces</topic><topic>Theoretical</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aksentijević, A.</creatorcontrib><creatorcontrib>Aleksić, S.</creatorcontrib><creatorcontrib>Pilipović, S.</creatorcontrib><collection>CrossRef</collection><jtitle>Theoretical and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aksentijević, A.</au><au>Aleksić, S.</au><au>Pilipović, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The structure of shift-invariant subspaces of Sobolev spaces</atitle><jtitle>Theoretical and mathematical physics</jtitle><stitle>Theor Math Phys</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>218</volume><issue>2</issue><spage>177</spage><epage>191</epage><pages>177-191</pages><issn>0040-5779</issn><eissn>1573-9333</eissn><abstract>We analyze shift-invariant spaces , subspaces of Sobolev spaces , , generated by a set of generators , , with at most countable, by the use of range functions and characterize Bessel sequences, frames, and the Riesz basis of such spaces. We also describe in terms of Gramians and their direct sum decompositions. We show that belongs to if and only if its Fourier transform has the form , , is a frame, and , with . Moreover, connecting two different approaches to shift-invariant spaces and , , under the assumption that a finite number of generators belongs to , we give the characterization of elements in through the expansions with coefficients in . The corresponding assertion holds for the intersections of such spaces and their duals in the case where the generators are elements of . We then show that is the space consisting of functions whose Fourier transforms equal products of functions in and periodic smooth functions. The appropriate assertion is obtained for .</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0040577924020016</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-5779
ispartof Theoretical and mathematical physics, 2024-02, Vol.218 (2), p.177-191
issn 0040-5779
1573-9333
language eng
recordid cdi_proquest_journals_2932487093
source SpringerNature Journals
subjects 14/34
639/766/189
639/766/530
639/766/747
Applications of Mathematics
Fourier transforms
Gramians
Invariants
Mathematical and Computational Physics
Physics
Physics and Astronomy
Sobolev space
Subspaces
Theoretical
Thermal expansion
title The structure of shift-invariant subspaces of Sobolev spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A08%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20structure%20of%20shift-invariant%20subspaces%20of%20Sobolev%20spaces&rft.jtitle=Theoretical%20and%20mathematical%20physics&rft.au=Aksentijevi%C4%87,%20A.&rft.date=2024-02-01&rft.volume=218&rft.issue=2&rft.spage=177&rft.epage=191&rft.pages=177-191&rft.issn=0040-5779&rft.eissn=1573-9333&rft_id=info:doi/10.1134/S0040577924020016&rft_dat=%3Cproquest_cross%3E2932487093%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932487093&rft_id=info:pmid/&rfr_iscdi=true