Synergetic Improvement of Interlaminar Fracture Toughness in Carbon Fiber/Epoxy Composites Interleaved with PES/PEK-C Hybrid Nanofiber Veils
In this study, two types of soluble thermoplastic resins were added to epoxy resin at a fixed weight ratio to prepare a three-phase cast body. The cast was then manufactured into hybrid nanofiber as interleaves for interlaminar toughening of carbon fiber/epoxy resin (CF/EP) composites using a co-sol...
Gespeichert in:
Veröffentlicht in: | Advanced fiber materials (Online) 2022-10, Vol.4 (5), p.1081-1093 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1093 |
---|---|
container_issue | 5 |
container_start_page | 1081 |
container_title | Advanced fiber materials (Online) |
container_volume | 4 |
creator | Zhou, Jinli Zhang, Chenyu Cheng, Chao Wang, Ming Yang, Zhihui Yang, Yanfei Yang, Hongying Yu, Muhuo |
description | In this study, two types of soluble thermoplastic resins were added to epoxy resin at a fixed weight ratio to prepare a three-phase cast body. The cast was then manufactured into hybrid nanofiber as interleaves for interlaminar toughening of carbon fiber/epoxy resin (CF/EP) composites using a co-solvent method. The results revealed that when the hybrid components reached 15 wt%, Polyethersulfone (PES) and polyaryletherketone cardo (PEK-C) exhibited the best synergistic toughening effect, and the fracture toughness increased by 99.8% and 39.8%, respectively, compared with the reference or the same proportion of the single PES toughened sample. We used PES/PEK-C hybrid nanofibers with an areal density of 19.2 g per square meter (gsm) as composite toughening layers. Apart from the lack of significant influence of PES nanofiber on CF/EP composites, the interlaminar fracture toughness of mode I and mode II layers increased by 88.3% and 46.9%, respectively, compared to the reference sample. Scanning Electron Microscopy of the fracture surface and cross-section micromorphology of the laminate displayed that the thermoplastic microspheres of different sizes contribute differently to crack resistance: PEK-C consumes more energy due to the debonding and extraction of microspheres and resin, whereas the presence of the PES phase can induce more plastic deformation and crack deflection. |
doi_str_mv | 10.1007/s42765-022-00160-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932485008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932485008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5f5d9385a8677c6ce84aa0d23918e3df691e7530489ecdad6274242cf13722923</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEhXwA6wssQ61x0kcL1HUQkUFSDzEznKTSXHV2MVOC_kHPppAEOxYzSzOuaO5UXTK6DmjVIxDAiJLYwoQU8oyGsu9aAQpJLGQ_Hn_dwd2GJ2EsKKUgmA9TkfRx31n0S-xNSWZNRvvdtigbYmrycy26Ne6MVZ7MvW6bLceyYPbLl8shkCMJYX2C2fJ1CzQjycb996RwjUbF0yL4ScA9Q4r8mbaF3I3uR_fTa7jglx1C28qcqOtq79k8oRmHY6jg1qvA578zKPocTp5KK7i-e3lrLiYxyVnso3TOq0kz1OdZ0KUWYl5ojWtgEuWI6_qTDIUKadJLrGsdJWBSCCBsmZcAEjgR9HZkNv_-7rF0KqV23rbn1QgOSR5SmneUzBQpXcheKzVxptG-04xqr6KV0Pxqm9SfRevZC_xQQo9bJfo_6L_sT4BmJmGjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932485008</pqid></control><display><type>article</type><title>Synergetic Improvement of Interlaminar Fracture Toughness in Carbon Fiber/Epoxy Composites Interleaved with PES/PEK-C Hybrid Nanofiber Veils</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Zhou, Jinli ; Zhang, Chenyu ; Cheng, Chao ; Wang, Ming ; Yang, Zhihui ; Yang, Yanfei ; Yang, Hongying ; Yu, Muhuo</creator><creatorcontrib>Zhou, Jinli ; Zhang, Chenyu ; Cheng, Chao ; Wang, Ming ; Yang, Zhihui ; Yang, Yanfei ; Yang, Hongying ; Yu, Muhuo</creatorcontrib><description>In this study, two types of soluble thermoplastic resins were added to epoxy resin at a fixed weight ratio to prepare a three-phase cast body. The cast was then manufactured into hybrid nanofiber as interleaves for interlaminar toughening of carbon fiber/epoxy resin (CF/EP) composites using a co-solvent method. The results revealed that when the hybrid components reached 15 wt%, Polyethersulfone (PES) and polyaryletherketone cardo (PEK-C) exhibited the best synergistic toughening effect, and the fracture toughness increased by 99.8% and 39.8%, respectively, compared with the reference or the same proportion of the single PES toughened sample. We used PES/PEK-C hybrid nanofibers with an areal density of 19.2 g per square meter (gsm) as composite toughening layers. Apart from the lack of significant influence of PES nanofiber on CF/EP composites, the interlaminar fracture toughness of mode I and mode II layers increased by 88.3% and 46.9%, respectively, compared to the reference sample. Scanning Electron Microscopy of the fracture surface and cross-section micromorphology of the laminate displayed that the thermoplastic microspheres of different sizes contribute differently to crack resistance: PEK-C consumes more energy due to the debonding and extraction of microspheres and resin, whereas the presence of the PES phase can induce more plastic deformation and crack deflection.</description><identifier>ISSN: 2524-7921</identifier><identifier>EISSN: 2524-793X</identifier><identifier>DOI: 10.1007/s42765-022-00160-9</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Carbon fiber reinforced plastics ; Carbon fibers ; Chemistry and Materials Science ; Composite materials ; Crack propagation ; Curing ; Delamination ; Epoxy resins ; Fracture surfaces ; Fracture toughness ; Laminates ; Materials Engineering ; Materials Science ; Microspheres ; Nanofibers ; Nanoscale Science and Technology ; Plastic deformation ; Polyaryletherketones ; Polyethersulfones ; Polymer Sciences ; R&D ; Renewable and Green Energy ; Research & development ; Research Article ; Shear strength ; Textile Engineering ; Thermoplastic resins ; Viscosity</subject><ispartof>Advanced fiber materials (Online), 2022-10, Vol.4 (5), p.1081-1093</ispartof><rights>Donghua University, Shanghai, China 2022</rights><rights>Donghua University, Shanghai, China 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5f5d9385a8677c6ce84aa0d23918e3df691e7530489ecdad6274242cf13722923</citedby><cites>FETCH-LOGICAL-c319t-5f5d9385a8677c6ce84aa0d23918e3df691e7530489ecdad6274242cf13722923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42765-022-00160-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2932485008?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Zhou, Jinli</creatorcontrib><creatorcontrib>Zhang, Chenyu</creatorcontrib><creatorcontrib>Cheng, Chao</creatorcontrib><creatorcontrib>Wang, Ming</creatorcontrib><creatorcontrib>Yang, Zhihui</creatorcontrib><creatorcontrib>Yang, Yanfei</creatorcontrib><creatorcontrib>Yang, Hongying</creatorcontrib><creatorcontrib>Yu, Muhuo</creatorcontrib><title>Synergetic Improvement of Interlaminar Fracture Toughness in Carbon Fiber/Epoxy Composites Interleaved with PES/PEK-C Hybrid Nanofiber Veils</title><title>Advanced fiber materials (Online)</title><addtitle>Adv. Fiber Mater</addtitle><description>In this study, two types of soluble thermoplastic resins were added to epoxy resin at a fixed weight ratio to prepare a three-phase cast body. The cast was then manufactured into hybrid nanofiber as interleaves for interlaminar toughening of carbon fiber/epoxy resin (CF/EP) composites using a co-solvent method. The results revealed that when the hybrid components reached 15 wt%, Polyethersulfone (PES) and polyaryletherketone cardo (PEK-C) exhibited the best synergistic toughening effect, and the fracture toughness increased by 99.8% and 39.8%, respectively, compared with the reference or the same proportion of the single PES toughened sample. We used PES/PEK-C hybrid nanofibers with an areal density of 19.2 g per square meter (gsm) as composite toughening layers. Apart from the lack of significant influence of PES nanofiber on CF/EP composites, the interlaminar fracture toughness of mode I and mode II layers increased by 88.3% and 46.9%, respectively, compared to the reference sample. Scanning Electron Microscopy of the fracture surface and cross-section micromorphology of the laminate displayed that the thermoplastic microspheres of different sizes contribute differently to crack resistance: PEK-C consumes more energy due to the debonding and extraction of microspheres and resin, whereas the presence of the PES phase can induce more plastic deformation and crack deflection.</description><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fibers</subject><subject>Chemistry and Materials Science</subject><subject>Composite materials</subject><subject>Crack propagation</subject><subject>Curing</subject><subject>Delamination</subject><subject>Epoxy resins</subject><subject>Fracture surfaces</subject><subject>Fracture toughness</subject><subject>Laminates</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Microspheres</subject><subject>Nanofibers</subject><subject>Nanoscale Science and Technology</subject><subject>Plastic deformation</subject><subject>Polyaryletherketones</subject><subject>Polyethersulfones</subject><subject>Polymer Sciences</subject><subject>R&D</subject><subject>Renewable and Green Energy</subject><subject>Research & development</subject><subject>Research Article</subject><subject>Shear strength</subject><subject>Textile Engineering</subject><subject>Thermoplastic resins</subject><subject>Viscosity</subject><issn>2524-7921</issn><issn>2524-793X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtOwzAQRSMEEhXwA6wssQ61x0kcL1HUQkUFSDzEznKTSXHV2MVOC_kHPppAEOxYzSzOuaO5UXTK6DmjVIxDAiJLYwoQU8oyGsu9aAQpJLGQ_Hn_dwd2GJ2EsKKUgmA9TkfRx31n0S-xNSWZNRvvdtigbYmrycy26Ne6MVZ7MvW6bLceyYPbLl8shkCMJYX2C2fJ1CzQjycb996RwjUbF0yL4ScA9Q4r8mbaF3I3uR_fTa7jglx1C28qcqOtq79k8oRmHY6jg1qvA578zKPocTp5KK7i-e3lrLiYxyVnso3TOq0kz1OdZ0KUWYl5ojWtgEuWI6_qTDIUKadJLrGsdJWBSCCBsmZcAEjgR9HZkNv_-7rF0KqV23rbn1QgOSR5SmneUzBQpXcheKzVxptG-04xqr6KV0Pxqm9SfRevZC_xQQo9bJfo_6L_sT4BmJmGjg</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Zhou, Jinli</creator><creator>Zhang, Chenyu</creator><creator>Cheng, Chao</creator><creator>Wang, Ming</creator><creator>Yang, Zhihui</creator><creator>Yang, Yanfei</creator><creator>Yang, Hongying</creator><creator>Yu, Muhuo</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20221001</creationdate><title>Synergetic Improvement of Interlaminar Fracture Toughness in Carbon Fiber/Epoxy Composites Interleaved with PES/PEK-C Hybrid Nanofiber Veils</title><author>Zhou, Jinli ; Zhang, Chenyu ; Cheng, Chao ; Wang, Ming ; Yang, Zhihui ; Yang, Yanfei ; Yang, Hongying ; Yu, Muhuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5f5d9385a8677c6ce84aa0d23918e3df691e7530489ecdad6274242cf13722923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fibers</topic><topic>Chemistry and Materials Science</topic><topic>Composite materials</topic><topic>Crack propagation</topic><topic>Curing</topic><topic>Delamination</topic><topic>Epoxy resins</topic><topic>Fracture surfaces</topic><topic>Fracture toughness</topic><topic>Laminates</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Microspheres</topic><topic>Nanofibers</topic><topic>Nanoscale Science and Technology</topic><topic>Plastic deformation</topic><topic>Polyaryletherketones</topic><topic>Polyethersulfones</topic><topic>Polymer Sciences</topic><topic>R&D</topic><topic>Renewable and Green Energy</topic><topic>Research & development</topic><topic>Research Article</topic><topic>Shear strength</topic><topic>Textile Engineering</topic><topic>Thermoplastic resins</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jinli</creatorcontrib><creatorcontrib>Zhang, Chenyu</creatorcontrib><creatorcontrib>Cheng, Chao</creatorcontrib><creatorcontrib>Wang, Ming</creatorcontrib><creatorcontrib>Yang, Zhihui</creatorcontrib><creatorcontrib>Yang, Yanfei</creatorcontrib><creatorcontrib>Yang, Hongying</creatorcontrib><creatorcontrib>Yu, Muhuo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Advanced fiber materials (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jinli</au><au>Zhang, Chenyu</au><au>Cheng, Chao</au><au>Wang, Ming</au><au>Yang, Zhihui</au><au>Yang, Yanfei</au><au>Yang, Hongying</au><au>Yu, Muhuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergetic Improvement of Interlaminar Fracture Toughness in Carbon Fiber/Epoxy Composites Interleaved with PES/PEK-C Hybrid Nanofiber Veils</atitle><jtitle>Advanced fiber materials (Online)</jtitle><stitle>Adv. Fiber Mater</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>4</volume><issue>5</issue><spage>1081</spage><epage>1093</epage><pages>1081-1093</pages><issn>2524-7921</issn><eissn>2524-793X</eissn><abstract>In this study, two types of soluble thermoplastic resins were added to epoxy resin at a fixed weight ratio to prepare a three-phase cast body. The cast was then manufactured into hybrid nanofiber as interleaves for interlaminar toughening of carbon fiber/epoxy resin (CF/EP) composites using a co-solvent method. The results revealed that when the hybrid components reached 15 wt%, Polyethersulfone (PES) and polyaryletherketone cardo (PEK-C) exhibited the best synergistic toughening effect, and the fracture toughness increased by 99.8% and 39.8%, respectively, compared with the reference or the same proportion of the single PES toughened sample. We used PES/PEK-C hybrid nanofibers with an areal density of 19.2 g per square meter (gsm) as composite toughening layers. Apart from the lack of significant influence of PES nanofiber on CF/EP composites, the interlaminar fracture toughness of mode I and mode II layers increased by 88.3% and 46.9%, respectively, compared to the reference sample. Scanning Electron Microscopy of the fracture surface and cross-section micromorphology of the laminate displayed that the thermoplastic microspheres of different sizes contribute differently to crack resistance: PEK-C consumes more energy due to the debonding and extraction of microspheres and resin, whereas the presence of the PES phase can induce more plastic deformation and crack deflection.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42765-022-00160-9</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2524-7921 |
ispartof | Advanced fiber materials (Online), 2022-10, Vol.4 (5), p.1081-1093 |
issn | 2524-7921 2524-793X |
language | eng |
recordid | cdi_proquest_journals_2932485008 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Carbon fiber reinforced plastics Carbon fibers Chemistry and Materials Science Composite materials Crack propagation Curing Delamination Epoxy resins Fracture surfaces Fracture toughness Laminates Materials Engineering Materials Science Microspheres Nanofibers Nanoscale Science and Technology Plastic deformation Polyaryletherketones Polyethersulfones Polymer Sciences R&D Renewable and Green Energy Research & development Research Article Shear strength Textile Engineering Thermoplastic resins Viscosity |
title | Synergetic Improvement of Interlaminar Fracture Toughness in Carbon Fiber/Epoxy Composites Interleaved with PES/PEK-C Hybrid Nanofiber Veils |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A10%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergetic%20Improvement%20of%20Interlaminar%20Fracture%20Toughness%20in%20Carbon%20Fiber/Epoxy%20Composites%20Interleaved%20with%20PES/PEK-C%20Hybrid%20Nanofiber%20Veils&rft.jtitle=Advanced%20fiber%20materials%20(Online)&rft.au=Zhou,%20Jinli&rft.date=2022-10-01&rft.volume=4&rft.issue=5&rft.spage=1081&rft.epage=1093&rft.pages=1081-1093&rft.issn=2524-7921&rft.eissn=2524-793X&rft_id=info:doi/10.1007/s42765-022-00160-9&rft_dat=%3Cproquest_cross%3E2932485008%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932485008&rft_id=info:pmid/&rfr_iscdi=true |