Numerical Simulation of Macrosegregation Caused by Thermal–Solutal Convection and Solidification Shrinkage Using ALE Model
Solidification shrinkage has been recognized as an important factor for macrosegregation formation. An arbitrary Lagrangian–Eulerian (ALE) model is constructed to predict the macrosegregation caused by thermal–solutal convection and solidification shrinkage. A novel mesh update algorithm is develope...
Gespeichert in:
Veröffentlicht in: | Acta metallurgica sinica : English letters 2019-11, Vol.32 (11), p.1396-1406 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1406 |
---|---|
container_issue | 11 |
container_start_page | 1396 |
container_title | Acta metallurgica sinica : English letters |
container_volume | 32 |
creator | Chen, Kang-Xin Shen, Hou-Fa |
description | Solidification shrinkage has been recognized as an important factor for macrosegregation formation. An arbitrary Lagrangian–Eulerian (ALE) model is constructed to predict the macrosegregation caused by thermal–solutal convection and solidification shrinkage. A novel mesh update algorithm is developed to account for the domain change induced by solidification shrinkage. The velocity–pressure coupling between the non-homogenous mass conservation equation and momentum equation is addressed by a modified pressure correction method. The governing equations are solved by the streamline-upwind/Petrov–Galerkin-stabilized finite element algorithm. The application of the model to the Pb-19.2 wt%Sn alloy solidification problem is considered. The inverse segregation is successfully predicted, and reasonable agreement with the literature results is obtained. Thus, the ALE model is established to be a highly effective tool for predicting the macrosegregation caused by solidification shrinkage and thermal–solutal convection. Finally, the effect of solidification shrinkage is analyzed. The results demonstrate that solidification shrinkage delays the advance of the solidification front and intensifies the segregation. |
doi_str_mv | 10.1007/s40195-019-00897-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932424305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932424305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-3c36c8ce39155950437406aa6a29f4c5bd4d463b24c6578fd2afff76c32b22453</originalsourceid><addsrcrecordid>eNp9kEtOwzAURS0EEqWwAUaWGAf8y8fDKiofqYVB27HlOHaaksTFbpAqMWAP7JCV4DZIzJg8y1fn3qd3AbjG6BYjlN55hjCPozAihDKeRugEjAjmLMIk46dgFKgkSjHH5-DC-034ERanI_Dx3Lfa1Uo2cFG3fSN3te2gNXAulbNeV05Xg5bL3usSFnu4XGvXyub782thm34XrLnt3rU6YrIrYZDrsjYh9Sgt1q7uXmWl4crXXQUnsymc21I3l-DMyMbrq993DFb302X-GM1eHp7yySxSjPBdRBVNVKY05TiOeYwYTRlKpEwk4YapuChZyRJaEKaSOM1MSaQxJk0UJQUJZ9IxuBlyt86-9drvxMb2rgsrBeGUMMIoOlBkoA6He6eN2Lq6lW4vMBKHlsXQsghDHFsWKJjoYPIB7irt_qL_cf0Ao2-Bzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932424305</pqid></control><display><type>article</type><title>Numerical Simulation of Macrosegregation Caused by Thermal–Solutal Convection and Solidification Shrinkage Using ALE Model</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Chen, Kang-Xin ; Shen, Hou-Fa</creator><creatorcontrib>Chen, Kang-Xin ; Shen, Hou-Fa</creatorcontrib><description>Solidification shrinkage has been recognized as an important factor for macrosegregation formation. An arbitrary Lagrangian–Eulerian (ALE) model is constructed to predict the macrosegregation caused by thermal–solutal convection and solidification shrinkage. A novel mesh update algorithm is developed to account for the domain change induced by solidification shrinkage. The velocity–pressure coupling between the non-homogenous mass conservation equation and momentum equation is addressed by a modified pressure correction method. The governing equations are solved by the streamline-upwind/Petrov–Galerkin-stabilized finite element algorithm. The application of the model to the Pb-19.2 wt%Sn alloy solidification problem is considered. The inverse segregation is successfully predicted, and reasonable agreement with the literature results is obtained. Thus, the ALE model is established to be a highly effective tool for predicting the macrosegregation caused by solidification shrinkage and thermal–solutal convection. Finally, the effect of solidification shrinkage is analyzed. The results demonstrate that solidification shrinkage delays the advance of the solidification front and intensifies the segregation.</description><identifier>ISSN: 1006-7191</identifier><identifier>EISSN: 2194-1289</identifier><identifier>DOI: 10.1007/s40195-019-00897-0</identifier><language>eng</language><publisher>Beijing: The Chinese Society for Metals</publisher><subject>Algorithms ; Alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Conservation equations ; Convection ; Corrosion and Coatings ; Finite element method ; Heat conductivity ; Lead ; Materials Science ; Mathematical models ; Metallic Materials ; Nanotechnology ; Numerical analysis ; Organometallic Chemistry ; Permeability ; Sedimentation & deposition ; Solidification ; Solids ; Spectroscopy/Spectrometry ; Tin ; Tin base alloys ; Tribology ; Velocity</subject><ispartof>Acta metallurgica sinica : English letters, 2019-11, Vol.32 (11), p.1396-1406</ispartof><rights>The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-3c36c8ce39155950437406aa6a29f4c5bd4d463b24c6578fd2afff76c32b22453</citedby><cites>FETCH-LOGICAL-c429t-3c36c8ce39155950437406aa6a29f4c5bd4d463b24c6578fd2afff76c32b22453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40195-019-00897-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2932424305?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,782,786,21397,27933,27934,33753,41497,42566,43814,51328,64394,64398,72478</link.rule.ids></links><search><creatorcontrib>Chen, Kang-Xin</creatorcontrib><creatorcontrib>Shen, Hou-Fa</creatorcontrib><title>Numerical Simulation of Macrosegregation Caused by Thermal–Solutal Convection and Solidification Shrinkage Using ALE Model</title><title>Acta metallurgica sinica : English letters</title><addtitle>Acta Metall. Sin. (Engl. Lett.)</addtitle><description>Solidification shrinkage has been recognized as an important factor for macrosegregation formation. An arbitrary Lagrangian–Eulerian (ALE) model is constructed to predict the macrosegregation caused by thermal–solutal convection and solidification shrinkage. A novel mesh update algorithm is developed to account for the domain change induced by solidification shrinkage. The velocity–pressure coupling between the non-homogenous mass conservation equation and momentum equation is addressed by a modified pressure correction method. The governing equations are solved by the streamline-upwind/Petrov–Galerkin-stabilized finite element algorithm. The application of the model to the Pb-19.2 wt%Sn alloy solidification problem is considered. The inverse segregation is successfully predicted, and reasonable agreement with the literature results is obtained. Thus, the ALE model is established to be a highly effective tool for predicting the macrosegregation caused by solidification shrinkage and thermal–solutal convection. Finally, the effect of solidification shrinkage is analyzed. The results demonstrate that solidification shrinkage delays the advance of the solidification front and intensifies the segregation.</description><subject>Algorithms</subject><subject>Alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Conservation equations</subject><subject>Convection</subject><subject>Corrosion and Coatings</subject><subject>Finite element method</subject><subject>Heat conductivity</subject><subject>Lead</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Metallic Materials</subject><subject>Nanotechnology</subject><subject>Numerical analysis</subject><subject>Organometallic Chemistry</subject><subject>Permeability</subject><subject>Sedimentation & deposition</subject><subject>Solidification</subject><subject>Solids</subject><subject>Spectroscopy/Spectrometry</subject><subject>Tin</subject><subject>Tin base alloys</subject><subject>Tribology</subject><subject>Velocity</subject><issn>1006-7191</issn><issn>2194-1289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtOwzAURS0EEqWwAUaWGAf8y8fDKiofqYVB27HlOHaaksTFbpAqMWAP7JCV4DZIzJg8y1fn3qd3AbjG6BYjlN55hjCPozAihDKeRugEjAjmLMIk46dgFKgkSjHH5-DC-034ERanI_Dx3Lfa1Uo2cFG3fSN3te2gNXAulbNeV05Xg5bL3usSFnu4XGvXyub782thm34XrLnt3rU6YrIrYZDrsjYh9Sgt1q7uXmWl4crXXQUnsymc21I3l-DMyMbrq993DFb302X-GM1eHp7yySxSjPBdRBVNVKY05TiOeYwYTRlKpEwk4YapuChZyRJaEKaSOM1MSaQxJk0UJQUJZ9IxuBlyt86-9drvxMb2rgsrBeGUMMIoOlBkoA6He6eN2Lq6lW4vMBKHlsXQsghDHFsWKJjoYPIB7irt_qL_cf0Ao2-Bzg</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Chen, Kang-Xin</creator><creator>Shen, Hou-Fa</creator><general>The Chinese Society for Metals</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20191101</creationdate><title>Numerical Simulation of Macrosegregation Caused by Thermal–Solutal Convection and Solidification Shrinkage Using ALE Model</title><author>Chen, Kang-Xin ; Shen, Hou-Fa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-3c36c8ce39155950437406aa6a29f4c5bd4d463b24c6578fd2afff76c32b22453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Conservation equations</topic><topic>Convection</topic><topic>Corrosion and Coatings</topic><topic>Finite element method</topic><topic>Heat conductivity</topic><topic>Lead</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Metallic Materials</topic><topic>Nanotechnology</topic><topic>Numerical analysis</topic><topic>Organometallic Chemistry</topic><topic>Permeability</topic><topic>Sedimentation & deposition</topic><topic>Solidification</topic><topic>Solids</topic><topic>Spectroscopy/Spectrometry</topic><topic>Tin</topic><topic>Tin base alloys</topic><topic>Tribology</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Kang-Xin</creatorcontrib><creatorcontrib>Shen, Hou-Fa</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Acta metallurgica sinica : English letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Kang-Xin</au><au>Shen, Hou-Fa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Macrosegregation Caused by Thermal–Solutal Convection and Solidification Shrinkage Using ALE Model</atitle><jtitle>Acta metallurgica sinica : English letters</jtitle><stitle>Acta Metall. Sin. (Engl. Lett.)</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>32</volume><issue>11</issue><spage>1396</spage><epage>1406</epage><pages>1396-1406</pages><issn>1006-7191</issn><eissn>2194-1289</eissn><abstract>Solidification shrinkage has been recognized as an important factor for macrosegregation formation. An arbitrary Lagrangian–Eulerian (ALE) model is constructed to predict the macrosegregation caused by thermal–solutal convection and solidification shrinkage. A novel mesh update algorithm is developed to account for the domain change induced by solidification shrinkage. The velocity–pressure coupling between the non-homogenous mass conservation equation and momentum equation is addressed by a modified pressure correction method. The governing equations are solved by the streamline-upwind/Petrov–Galerkin-stabilized finite element algorithm. The application of the model to the Pb-19.2 wt%Sn alloy solidification problem is considered. The inverse segregation is successfully predicted, and reasonable agreement with the literature results is obtained. Thus, the ALE model is established to be a highly effective tool for predicting the macrosegregation caused by solidification shrinkage and thermal–solutal convection. Finally, the effect of solidification shrinkage is analyzed. The results demonstrate that solidification shrinkage delays the advance of the solidification front and intensifies the segregation.</abstract><cop>Beijing</cop><pub>The Chinese Society for Metals</pub><doi>10.1007/s40195-019-00897-0</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1006-7191 |
ispartof | Acta metallurgica sinica : English letters, 2019-11, Vol.32 (11), p.1396-1406 |
issn | 1006-7191 2194-1289 |
language | eng |
recordid | cdi_proquest_journals_2932424305 |
source | SpringerNature Journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central |
subjects | Algorithms Alloys Characterization and Evaluation of Materials Chemistry and Materials Science Conservation equations Convection Corrosion and Coatings Finite element method Heat conductivity Lead Materials Science Mathematical models Metallic Materials Nanotechnology Numerical analysis Organometallic Chemistry Permeability Sedimentation & deposition Solidification Solids Spectroscopy/Spectrometry Tin Tin base alloys Tribology Velocity |
title | Numerical Simulation of Macrosegregation Caused by Thermal–Solutal Convection and Solidification Shrinkage Using ALE Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T17%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Macrosegregation%20Caused%20by%20Thermal%E2%80%93Solutal%20Convection%20and%20Solidification%20Shrinkage%20Using%20ALE%20Model&rft.jtitle=Acta%20metallurgica%20sinica%20:%20English%20letters&rft.au=Chen,%20Kang-Xin&rft.date=2019-11-01&rft.volume=32&rft.issue=11&rft.spage=1396&rft.epage=1406&rft.pages=1396-1406&rft.issn=1006-7191&rft.eissn=2194-1289&rft_id=info:doi/10.1007/s40195-019-00897-0&rft_dat=%3Cproquest_cross%3E2932424305%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932424305&rft_id=info:pmid/&rfr_iscdi=true |