Numerical Simulation of Macrosegregation Caused by Thermal–Solutal Convection and Solidification Shrinkage Using ALE Model

Solidification shrinkage has been recognized as an important factor for macrosegregation formation. An arbitrary Lagrangian–Eulerian (ALE) model is constructed to predict the macrosegregation caused by thermal–solutal convection and solidification shrinkage. A novel mesh update algorithm is develope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta metallurgica sinica : English letters 2019-11, Vol.32 (11), p.1396-1406
Hauptverfasser: Chen, Kang-Xin, Shen, Hou-Fa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1406
container_issue 11
container_start_page 1396
container_title Acta metallurgica sinica : English letters
container_volume 32
creator Chen, Kang-Xin
Shen, Hou-Fa
description Solidification shrinkage has been recognized as an important factor for macrosegregation formation. An arbitrary Lagrangian–Eulerian (ALE) model is constructed to predict the macrosegregation caused by thermal–solutal convection and solidification shrinkage. A novel mesh update algorithm is developed to account for the domain change induced by solidification shrinkage. The velocity–pressure coupling between the non-homogenous mass conservation equation and momentum equation is addressed by a modified pressure correction method. The governing equations are solved by the streamline-upwind/Petrov–Galerkin-stabilized finite element algorithm. The application of the model to the Pb-19.2 wt%Sn alloy solidification problem is considered. The inverse segregation is successfully predicted, and reasonable agreement with the literature results is obtained. Thus, the ALE model is established to be a highly effective tool for predicting the macrosegregation caused by solidification shrinkage and thermal–solutal convection. Finally, the effect of solidification shrinkage is analyzed. The results demonstrate that solidification shrinkage delays the advance of the solidification front and intensifies the segregation.
doi_str_mv 10.1007/s40195-019-00897-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932424305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932424305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-3c36c8ce39155950437406aa6a29f4c5bd4d463b24c6578fd2afff76c32b22453</originalsourceid><addsrcrecordid>eNp9kEtOwzAURS0EEqWwAUaWGAf8y8fDKiofqYVB27HlOHaaksTFbpAqMWAP7JCV4DZIzJg8y1fn3qd3AbjG6BYjlN55hjCPozAihDKeRugEjAjmLMIk46dgFKgkSjHH5-DC-034ERanI_Dx3Lfa1Uo2cFG3fSN3te2gNXAulbNeV05Xg5bL3usSFnu4XGvXyub782thm34XrLnt3rU6YrIrYZDrsjYh9Sgt1q7uXmWl4crXXQUnsymc21I3l-DMyMbrq993DFb302X-GM1eHp7yySxSjPBdRBVNVKY05TiOeYwYTRlKpEwk4YapuChZyRJaEKaSOM1MSaQxJk0UJQUJZ9IxuBlyt86-9drvxMb2rgsrBeGUMMIoOlBkoA6He6eN2Lq6lW4vMBKHlsXQsghDHFsWKJjoYPIB7irt_qL_cf0Ao2-Bzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932424305</pqid></control><display><type>article</type><title>Numerical Simulation of Macrosegregation Caused by Thermal–Solutal Convection and Solidification Shrinkage Using ALE Model</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Chen, Kang-Xin ; Shen, Hou-Fa</creator><creatorcontrib>Chen, Kang-Xin ; Shen, Hou-Fa</creatorcontrib><description>Solidification shrinkage has been recognized as an important factor for macrosegregation formation. An arbitrary Lagrangian–Eulerian (ALE) model is constructed to predict the macrosegregation caused by thermal–solutal convection and solidification shrinkage. A novel mesh update algorithm is developed to account for the domain change induced by solidification shrinkage. The velocity–pressure coupling between the non-homogenous mass conservation equation and momentum equation is addressed by a modified pressure correction method. The governing equations are solved by the streamline-upwind/Petrov–Galerkin-stabilized finite element algorithm. The application of the model to the Pb-19.2 wt%Sn alloy solidification problem is considered. The inverse segregation is successfully predicted, and reasonable agreement with the literature results is obtained. Thus, the ALE model is established to be a highly effective tool for predicting the macrosegregation caused by solidification shrinkage and thermal–solutal convection. Finally, the effect of solidification shrinkage is analyzed. The results demonstrate that solidification shrinkage delays the advance of the solidification front and intensifies the segregation.</description><identifier>ISSN: 1006-7191</identifier><identifier>EISSN: 2194-1289</identifier><identifier>DOI: 10.1007/s40195-019-00897-0</identifier><language>eng</language><publisher>Beijing: The Chinese Society for Metals</publisher><subject>Algorithms ; Alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Conservation equations ; Convection ; Corrosion and Coatings ; Finite element method ; Heat conductivity ; Lead ; Materials Science ; Mathematical models ; Metallic Materials ; Nanotechnology ; Numerical analysis ; Organometallic Chemistry ; Permeability ; Sedimentation &amp; deposition ; Solidification ; Solids ; Spectroscopy/Spectrometry ; Tin ; Tin base alloys ; Tribology ; Velocity</subject><ispartof>Acta metallurgica sinica : English letters, 2019-11, Vol.32 (11), p.1396-1406</ispartof><rights>The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-3c36c8ce39155950437406aa6a29f4c5bd4d463b24c6578fd2afff76c32b22453</citedby><cites>FETCH-LOGICAL-c429t-3c36c8ce39155950437406aa6a29f4c5bd4d463b24c6578fd2afff76c32b22453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40195-019-00897-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2932424305?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,782,786,21397,27933,27934,33753,41497,42566,43814,51328,64394,64398,72478</link.rule.ids></links><search><creatorcontrib>Chen, Kang-Xin</creatorcontrib><creatorcontrib>Shen, Hou-Fa</creatorcontrib><title>Numerical Simulation of Macrosegregation Caused by Thermal–Solutal Convection and Solidification Shrinkage Using ALE Model</title><title>Acta metallurgica sinica : English letters</title><addtitle>Acta Metall. Sin. (Engl. Lett.)</addtitle><description>Solidification shrinkage has been recognized as an important factor for macrosegregation formation. An arbitrary Lagrangian–Eulerian (ALE) model is constructed to predict the macrosegregation caused by thermal–solutal convection and solidification shrinkage. A novel mesh update algorithm is developed to account for the domain change induced by solidification shrinkage. The velocity–pressure coupling between the non-homogenous mass conservation equation and momentum equation is addressed by a modified pressure correction method. The governing equations are solved by the streamline-upwind/Petrov–Galerkin-stabilized finite element algorithm. The application of the model to the Pb-19.2 wt%Sn alloy solidification problem is considered. The inverse segregation is successfully predicted, and reasonable agreement with the literature results is obtained. Thus, the ALE model is established to be a highly effective tool for predicting the macrosegregation caused by solidification shrinkage and thermal–solutal convection. Finally, the effect of solidification shrinkage is analyzed. The results demonstrate that solidification shrinkage delays the advance of the solidification front and intensifies the segregation.</description><subject>Algorithms</subject><subject>Alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Conservation equations</subject><subject>Convection</subject><subject>Corrosion and Coatings</subject><subject>Finite element method</subject><subject>Heat conductivity</subject><subject>Lead</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Metallic Materials</subject><subject>Nanotechnology</subject><subject>Numerical analysis</subject><subject>Organometallic Chemistry</subject><subject>Permeability</subject><subject>Sedimentation &amp; deposition</subject><subject>Solidification</subject><subject>Solids</subject><subject>Spectroscopy/Spectrometry</subject><subject>Tin</subject><subject>Tin base alloys</subject><subject>Tribology</subject><subject>Velocity</subject><issn>1006-7191</issn><issn>2194-1289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtOwzAURS0EEqWwAUaWGAf8y8fDKiofqYVB27HlOHaaksTFbpAqMWAP7JCV4DZIzJg8y1fn3qd3AbjG6BYjlN55hjCPozAihDKeRugEjAjmLMIk46dgFKgkSjHH5-DC-034ERanI_Dx3Lfa1Uo2cFG3fSN3te2gNXAulbNeV05Xg5bL3usSFnu4XGvXyub782thm34XrLnt3rU6YrIrYZDrsjYh9Sgt1q7uXmWl4crXXQUnsymc21I3l-DMyMbrq993DFb302X-GM1eHp7yySxSjPBdRBVNVKY05TiOeYwYTRlKpEwk4YapuChZyRJaEKaSOM1MSaQxJk0UJQUJZ9IxuBlyt86-9drvxMb2rgsrBeGUMMIoOlBkoA6He6eN2Lq6lW4vMBKHlsXQsghDHFsWKJjoYPIB7irt_qL_cf0Ao2-Bzg</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Chen, Kang-Xin</creator><creator>Shen, Hou-Fa</creator><general>The Chinese Society for Metals</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20191101</creationdate><title>Numerical Simulation of Macrosegregation Caused by Thermal–Solutal Convection and Solidification Shrinkage Using ALE Model</title><author>Chen, Kang-Xin ; Shen, Hou-Fa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-3c36c8ce39155950437406aa6a29f4c5bd4d463b24c6578fd2afff76c32b22453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Conservation equations</topic><topic>Convection</topic><topic>Corrosion and Coatings</topic><topic>Finite element method</topic><topic>Heat conductivity</topic><topic>Lead</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Metallic Materials</topic><topic>Nanotechnology</topic><topic>Numerical analysis</topic><topic>Organometallic Chemistry</topic><topic>Permeability</topic><topic>Sedimentation &amp; deposition</topic><topic>Solidification</topic><topic>Solids</topic><topic>Spectroscopy/Spectrometry</topic><topic>Tin</topic><topic>Tin base alloys</topic><topic>Tribology</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Kang-Xin</creatorcontrib><creatorcontrib>Shen, Hou-Fa</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Acta metallurgica sinica : English letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Kang-Xin</au><au>Shen, Hou-Fa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Macrosegregation Caused by Thermal–Solutal Convection and Solidification Shrinkage Using ALE Model</atitle><jtitle>Acta metallurgica sinica : English letters</jtitle><stitle>Acta Metall. Sin. (Engl. Lett.)</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>32</volume><issue>11</issue><spage>1396</spage><epage>1406</epage><pages>1396-1406</pages><issn>1006-7191</issn><eissn>2194-1289</eissn><abstract>Solidification shrinkage has been recognized as an important factor for macrosegregation formation. An arbitrary Lagrangian–Eulerian (ALE) model is constructed to predict the macrosegregation caused by thermal–solutal convection and solidification shrinkage. A novel mesh update algorithm is developed to account for the domain change induced by solidification shrinkage. The velocity–pressure coupling between the non-homogenous mass conservation equation and momentum equation is addressed by a modified pressure correction method. The governing equations are solved by the streamline-upwind/Petrov–Galerkin-stabilized finite element algorithm. The application of the model to the Pb-19.2 wt%Sn alloy solidification problem is considered. The inverse segregation is successfully predicted, and reasonable agreement with the literature results is obtained. Thus, the ALE model is established to be a highly effective tool for predicting the macrosegregation caused by solidification shrinkage and thermal–solutal convection. Finally, the effect of solidification shrinkage is analyzed. The results demonstrate that solidification shrinkage delays the advance of the solidification front and intensifies the segregation.</abstract><cop>Beijing</cop><pub>The Chinese Society for Metals</pub><doi>10.1007/s40195-019-00897-0</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1006-7191
ispartof Acta metallurgica sinica : English letters, 2019-11, Vol.32 (11), p.1396-1406
issn 1006-7191
2194-1289
language eng
recordid cdi_proquest_journals_2932424305
source SpringerNature Journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central
subjects Algorithms
Alloys
Characterization and Evaluation of Materials
Chemistry and Materials Science
Conservation equations
Convection
Corrosion and Coatings
Finite element method
Heat conductivity
Lead
Materials Science
Mathematical models
Metallic Materials
Nanotechnology
Numerical analysis
Organometallic Chemistry
Permeability
Sedimentation & deposition
Solidification
Solids
Spectroscopy/Spectrometry
Tin
Tin base alloys
Tribology
Velocity
title Numerical Simulation of Macrosegregation Caused by Thermal–Solutal Convection and Solidification Shrinkage Using ALE Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T17%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Macrosegregation%20Caused%20by%20Thermal%E2%80%93Solutal%20Convection%20and%20Solidification%20Shrinkage%20Using%20ALE%20Model&rft.jtitle=Acta%20metallurgica%20sinica%20:%20English%20letters&rft.au=Chen,%20Kang-Xin&rft.date=2019-11-01&rft.volume=32&rft.issue=11&rft.spage=1396&rft.epage=1406&rft.pages=1396-1406&rft.issn=1006-7191&rft.eissn=2194-1289&rft_id=info:doi/10.1007/s40195-019-00897-0&rft_dat=%3Cproquest_cross%3E2932424305%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932424305&rft_id=info:pmid/&rfr_iscdi=true