Application of palm oil frond activated carbon for biobattery electrodes

This study aims to investigate the effect of NaOH concentration and immersion time on the activation of carbon from the oil palm frond, specifically focussing on the surface morphology and characteristics as electrodes for biobattery application. Carbonization and NaOH activation are carried out at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy storage (Hoboken, N.J. : 2019) N.J. : 2019), 2024-02, Vol.6 (1), p.n/a
Hauptverfasser: Akbar, Muhammad Ilham, Zahirah, Natasya, Utomo, Yogi Mirza Pangestu, Risnawati, Risnawati, Astuti, Widi, Rohimsyah, Fikan Mubarok, Triana, Yunita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Energy storage (Hoboken, N.J. : 2019)
container_volume 6
creator Akbar, Muhammad Ilham
Zahirah, Natasya
Utomo, Yogi Mirza Pangestu
Risnawati, Risnawati
Astuti, Widi
Rohimsyah, Fikan Mubarok
Triana, Yunita
description This study aims to investigate the effect of NaOH concentration and immersion time on the activation of carbon from the oil palm frond, specifically focussing on the surface morphology and characteristics as electrodes for biobattery application. Carbonization and NaOH activation are carried out at 0.5, 1, 1.5, 2, and 2.5 M at different immersion times of 12, 18, 24, 30, and 36 hour. Moreover, the activated carbon was analyzed with a scanning electron microscope to observe the morphology, and the Brunauer–Emett–Teller (method was used to measure the surface area of activated carbon). Furthermore, another outcome of this study is the development of a prototype biobattery. At 1 M, the optimal concentration of NaOH was observed, producing the highest surface area of 336.493 m2g−1 and an electric potential of 0.653 V. On the other hand, the optimal immersion time was 30 hour with the highest surface area of 396 808 m2g−1 and an electric potential of 0.902 V.
doi_str_mv 10.1002/est2.547
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932422618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932422618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2547-8903da3e7366d7f67f38f65cb9d2a986c4c494d3846b9ba12c8f03615b42fc213</originalsourceid><addsrcrecordid>eNp10MtKAzEUBuAgCpZa8BECbtxMzW0yybKUaoWCC-s65Aop02bMpErf3pS6cOPqnMXHufwA3GM0xwiRJz8WMm9ZdwUmpO1EwwQn13_6WzAbxx2qFDPJSTsB68Uw9NHqEtMBpgAH3e9hij0MOR0c1LbEL128g1ZnU0lIGZqYjC7F5xP0vbclJ-fHO3ATdD_62W-dgo_n1Xa5bjZvL6_LxaaxpB7WCImo09R3lHPXBd4FKgJvrZGOaCm4ZZZJ5qhg3EijMbEiIMpxaxgJlmA6BQ-XuUNOn8f6sNqlYz7UlYpIShghHIuqHi_K5jSO2Qc15LjX-aQwUueo1DkqVS-qtLnQ79j7079Ord635w_oD9XUaV0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932422618</pqid></control><display><type>article</type><title>Application of palm oil frond activated carbon for biobattery electrodes</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Akbar, Muhammad Ilham ; Zahirah, Natasya ; Utomo, Yogi Mirza Pangestu ; Risnawati, Risnawati ; Astuti, Widi ; Rohimsyah, Fikan Mubarok ; Triana, Yunita</creator><creatorcontrib>Akbar, Muhammad Ilham ; Zahirah, Natasya ; Utomo, Yogi Mirza Pangestu ; Risnawati, Risnawati ; Astuti, Widi ; Rohimsyah, Fikan Mubarok ; Triana, Yunita</creatorcontrib><description>This study aims to investigate the effect of NaOH concentration and immersion time on the activation of carbon from the oil palm frond, specifically focussing on the surface morphology and characteristics as electrodes for biobattery application. Carbonization and NaOH activation are carried out at 0.5, 1, 1.5, 2, and 2.5 M at different immersion times of 12, 18, 24, 30, and 36 hour. Moreover, the activated carbon was analyzed with a scanning electron microscope to observe the morphology, and the Brunauer–Emett–Teller (method was used to measure the surface area of activated carbon). Furthermore, another outcome of this study is the development of a prototype biobattery. At 1 M, the optimal concentration of NaOH was observed, producing the highest surface area of 336.493 m2g−1 and an electric potential of 0.653 V. On the other hand, the optimal immersion time was 30 hour with the highest surface area of 396 808 m2g−1 and an electric potential of 0.902 V.</description><identifier>ISSN: 2578-4862</identifier><identifier>EISSN: 2578-4862</identifier><identifier>DOI: 10.1002/est2.547</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Activated carbon ; anode ; bio battery ; carbon ; cathode ; Electric potential ; Electrodes ; Morphology ; palm frond ; Palm oil ; Submerging ; Surface area</subject><ispartof>Energy storage (Hoboken, N.J. : 2019), 2024-02, Vol.6 (1), p.n/a</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2547-8903da3e7366d7f67f38f65cb9d2a986c4c494d3846b9ba12c8f03615b42fc213</cites><orcidid>0000-0003-2912-8692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fest2.547$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fest2.547$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Akbar, Muhammad Ilham</creatorcontrib><creatorcontrib>Zahirah, Natasya</creatorcontrib><creatorcontrib>Utomo, Yogi Mirza Pangestu</creatorcontrib><creatorcontrib>Risnawati, Risnawati</creatorcontrib><creatorcontrib>Astuti, Widi</creatorcontrib><creatorcontrib>Rohimsyah, Fikan Mubarok</creatorcontrib><creatorcontrib>Triana, Yunita</creatorcontrib><title>Application of palm oil frond activated carbon for biobattery electrodes</title><title>Energy storage (Hoboken, N.J. : 2019)</title><description>This study aims to investigate the effect of NaOH concentration and immersion time on the activation of carbon from the oil palm frond, specifically focussing on the surface morphology and characteristics as electrodes for biobattery application. Carbonization and NaOH activation are carried out at 0.5, 1, 1.5, 2, and 2.5 M at different immersion times of 12, 18, 24, 30, and 36 hour. Moreover, the activated carbon was analyzed with a scanning electron microscope to observe the morphology, and the Brunauer–Emett–Teller (method was used to measure the surface area of activated carbon). Furthermore, another outcome of this study is the development of a prototype biobattery. At 1 M, the optimal concentration of NaOH was observed, producing the highest surface area of 336.493 m2g−1 and an electric potential of 0.653 V. On the other hand, the optimal immersion time was 30 hour with the highest surface area of 396 808 m2g−1 and an electric potential of 0.902 V.</description><subject>Activated carbon</subject><subject>anode</subject><subject>bio battery</subject><subject>carbon</subject><subject>cathode</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Morphology</subject><subject>palm frond</subject><subject>Palm oil</subject><subject>Submerging</subject><subject>Surface area</subject><issn>2578-4862</issn><issn>2578-4862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10MtKAzEUBuAgCpZa8BECbtxMzW0yybKUaoWCC-s65Aop02bMpErf3pS6cOPqnMXHufwA3GM0xwiRJz8WMm9ZdwUmpO1EwwQn13_6WzAbxx2qFDPJSTsB68Uw9NHqEtMBpgAH3e9hij0MOR0c1LbEL128g1ZnU0lIGZqYjC7F5xP0vbclJ-fHO3ATdD_62W-dgo_n1Xa5bjZvL6_LxaaxpB7WCImo09R3lHPXBd4FKgJvrZGOaCm4ZZZJ5qhg3EijMbEiIMpxaxgJlmA6BQ-XuUNOn8f6sNqlYz7UlYpIShghHIuqHi_K5jSO2Qc15LjX-aQwUueo1DkqVS-qtLnQ79j7079Ord635w_oD9XUaV0</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Akbar, Muhammad Ilham</creator><creator>Zahirah, Natasya</creator><creator>Utomo, Yogi Mirza Pangestu</creator><creator>Risnawati, Risnawati</creator><creator>Astuti, Widi</creator><creator>Rohimsyah, Fikan Mubarok</creator><creator>Triana, Yunita</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2912-8692</orcidid></search><sort><creationdate>202402</creationdate><title>Application of palm oil frond activated carbon for biobattery electrodes</title><author>Akbar, Muhammad Ilham ; Zahirah, Natasya ; Utomo, Yogi Mirza Pangestu ; Risnawati, Risnawati ; Astuti, Widi ; Rohimsyah, Fikan Mubarok ; Triana, Yunita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2547-8903da3e7366d7f67f38f65cb9d2a986c4c494d3846b9ba12c8f03615b42fc213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activated carbon</topic><topic>anode</topic><topic>bio battery</topic><topic>carbon</topic><topic>cathode</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Morphology</topic><topic>palm frond</topic><topic>Palm oil</topic><topic>Submerging</topic><topic>Surface area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akbar, Muhammad Ilham</creatorcontrib><creatorcontrib>Zahirah, Natasya</creatorcontrib><creatorcontrib>Utomo, Yogi Mirza Pangestu</creatorcontrib><creatorcontrib>Risnawati, Risnawati</creatorcontrib><creatorcontrib>Astuti, Widi</creatorcontrib><creatorcontrib>Rohimsyah, Fikan Mubarok</creatorcontrib><creatorcontrib>Triana, Yunita</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Energy storage (Hoboken, N.J. : 2019)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akbar, Muhammad Ilham</au><au>Zahirah, Natasya</au><au>Utomo, Yogi Mirza Pangestu</au><au>Risnawati, Risnawati</au><au>Astuti, Widi</au><au>Rohimsyah, Fikan Mubarok</au><au>Triana, Yunita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of palm oil frond activated carbon for biobattery electrodes</atitle><jtitle>Energy storage (Hoboken, N.J. : 2019)</jtitle><date>2024-02</date><risdate>2024</risdate><volume>6</volume><issue>1</issue><epage>n/a</epage><issn>2578-4862</issn><eissn>2578-4862</eissn><abstract>This study aims to investigate the effect of NaOH concentration and immersion time on the activation of carbon from the oil palm frond, specifically focussing on the surface morphology and characteristics as electrodes for biobattery application. Carbonization and NaOH activation are carried out at 0.5, 1, 1.5, 2, and 2.5 M at different immersion times of 12, 18, 24, 30, and 36 hour. Moreover, the activated carbon was analyzed with a scanning electron microscope to observe the morphology, and the Brunauer–Emett–Teller (method was used to measure the surface area of activated carbon). Furthermore, another outcome of this study is the development of a prototype biobattery. At 1 M, the optimal concentration of NaOH was observed, producing the highest surface area of 336.493 m2g−1 and an electric potential of 0.653 V. On the other hand, the optimal immersion time was 30 hour with the highest surface area of 396 808 m2g−1 and an electric potential of 0.902 V.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/est2.547</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2912-8692</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2578-4862
ispartof Energy storage (Hoboken, N.J. : 2019), 2024-02, Vol.6 (1), p.n/a
issn 2578-4862
2578-4862
language eng
recordid cdi_proquest_journals_2932422618
source Wiley Online Library - AutoHoldings Journals
subjects Activated carbon
anode
bio battery
carbon
cathode
Electric potential
Electrodes
Morphology
palm frond
Palm oil
Submerging
Surface area
title Application of palm oil frond activated carbon for biobattery electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A45%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20palm%20oil%20frond%20activated%20carbon%20for%20biobattery%20electrodes&rft.jtitle=Energy%20storage%20(Hoboken,%20N.J.%20:%202019)&rft.au=Akbar,%20Muhammad%20Ilham&rft.date=2024-02&rft.volume=6&rft.issue=1&rft.epage=n/a&rft.issn=2578-4862&rft.eissn=2578-4862&rft_id=info:doi/10.1002/est2.547&rft_dat=%3Cproquest_cross%3E2932422618%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932422618&rft_id=info:pmid/&rfr_iscdi=true