Hydrogen storage properties in rapidly solidified TiZrVCrNi high‐entropy alloys
The development of alloys with substantial hydrogen storage capacities is a potential solution to the demand for hydrogen storage in a future hydrogen‐based energy system. The synthesis, structural‐microstructural properties, and hydrogen storage performance of a multicomponent TiZrVCrNi high‐entrop...
Gespeichert in:
Veröffentlicht in: | Energy storage (Hoboken, N.J. : 2019) N.J. : 2019), 2024-02, Vol.6 (1), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Energy storage (Hoboken, N.J. : 2019) |
container_volume | 6 |
creator | Kumar, Abhishek Yadav, Thakur Prasad Shaz, Mohammad Abu Mukhopadhyay, Nilay Krishna |
description | The development of alloys with substantial hydrogen storage capacities is a potential solution to the demand for hydrogen storage in a future hydrogen‐based energy system. The synthesis, structural‐microstructural properties, and hydrogen storage performance of a multicomponent TiZrVCrNi high‐entropy melt‐spun ribbon have been discussed in the present investigation. The x‐ray diffraction and transmission electron microscopy investigations confirm that this as‐cast and melt‐spun alloy contains only a single C14‐type hexagonal (a = b = 5.02 Å, c = 8.15 Å, α = β = 90°, γ = 120°) Laves phase. The room temperature pressure composition isotherms were studied with a pressure range of 0 to 40 atm. Continuing from our previous study in which we reported a hydrogen storage capacity of ~1.5 wt% in an as‐cast high‐entropy alloy synthesized using Arc melting, the total hydrogen storage capacity of TiZrVCrNi high‐entropy melt‐spun ribbons was found to be ~2 wt% in this work. This study makes the way forward for greater hydrogen storage in melt‐spun ribbons. The observation of only minimal losses in storage capacity, even after 10 cycles of experiments on hydrogen absorption, shows that the reversible hydrogen storage capacity has high durability. To the best of our knowledge, these demonstrations are the first to present a study on the hydrogen storage capacity (~2 wt%) of the equiatomic TiZrVCrNi melt‐spun ribbons. |
doi_str_mv | 10.1002/est2.532 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932422617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932422617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2932-bc9ba3ecc5fb67bde43770f4f4f188a4bea5605f77c7a885edcebfdad873a24f3</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EElWpxCNYYmFJcRw7TkdUFYpUgRCFgcVy7HPrKiTBToWy8Qg8I0-CozKwoBvuhu_u_-9H6Dwl05QQegWho1Oe0SM0olwUCStyevxnPkWTEHYkoimb5ZSP0OOyN77ZQI1D13i1Adz6pgXfOQjY1dir1pmqx6GpnHHWgcFr9-pf5v7e4a3bbL8_v6Du4k6PVVU1fThDJ1ZVASa_fYyebxbr-TJZPdzeza9XiaazjCalnpUqA625LXNRGmCZEMSyWGlRKFaC4jnhVggtVFFwMBpKa5QpRKYos9kYXRzuRsPv-_i53DV7X0dJOQgwSvNUROryQGnfhODByta7N-V7mRI5ZCaHzGTMLKLJAf1wFfT_cnLxtKYD_wP8ZnAB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932422617</pqid></control><display><type>article</type><title>Hydrogen storage properties in rapidly solidified TiZrVCrNi high‐entropy alloys</title><source>Wiley Journals</source><creator>Kumar, Abhishek ; Yadav, Thakur Prasad ; Shaz, Mohammad Abu ; Mukhopadhyay, Nilay Krishna</creator><creatorcontrib>Kumar, Abhishek ; Yadav, Thakur Prasad ; Shaz, Mohammad Abu ; Mukhopadhyay, Nilay Krishna</creatorcontrib><description>The development of alloys with substantial hydrogen storage capacities is a potential solution to the demand for hydrogen storage in a future hydrogen‐based energy system. The synthesis, structural‐microstructural properties, and hydrogen storage performance of a multicomponent TiZrVCrNi high‐entropy melt‐spun ribbon have been discussed in the present investigation. The x‐ray diffraction and transmission electron microscopy investigations confirm that this as‐cast and melt‐spun alloy contains only a single C14‐type hexagonal (a = b = 5.02 Å, c = 8.15 Å, α = β = 90°, γ = 120°) Laves phase. The room temperature pressure composition isotherms were studied with a pressure range of 0 to 40 atm. Continuing from our previous study in which we reported a hydrogen storage capacity of ~1.5 wt% in an as‐cast high‐entropy alloy synthesized using Arc melting, the total hydrogen storage capacity of TiZrVCrNi high‐entropy melt‐spun ribbons was found to be ~2 wt% in this work. This study makes the way forward for greater hydrogen storage in melt‐spun ribbons. The observation of only minimal losses in storage capacity, even after 10 cycles of experiments on hydrogen absorption, shows that the reversible hydrogen storage capacity has high durability. To the best of our knowledge, these demonstrations are the first to present a study on the hydrogen storage capacity (~2 wt%) of the equiatomic TiZrVCrNi melt‐spun ribbons.</description><identifier>ISSN: 2578-4862</identifier><identifier>EISSN: 2578-4862</identifier><identifier>DOI: 10.1002/est2.532</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Alloy development ; Alloys ; Electric arc melting ; Entropy ; High entropy alloys ; Hydrogen ; Hydrogen storage ; Laves phase ; melt‐spun ribbon ; multicomponent alloys ; Rapid solidification ; Ribbons ; Room temperature ; Storage capacity</subject><ispartof>Energy storage (Hoboken, N.J. : 2019), 2024-02, Vol.6 (1), p.n/a</ispartof><rights>2023 John Wiley & Sons Ltd.</rights><rights>2024 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2932-bc9ba3ecc5fb67bde43770f4f4f188a4bea5605f77c7a885edcebfdad873a24f3</citedby><cites>FETCH-LOGICAL-c2932-bc9ba3ecc5fb67bde43770f4f4f188a4bea5605f77c7a885edcebfdad873a24f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fest2.532$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fest2.532$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Kumar, Abhishek</creatorcontrib><creatorcontrib>Yadav, Thakur Prasad</creatorcontrib><creatorcontrib>Shaz, Mohammad Abu</creatorcontrib><creatorcontrib>Mukhopadhyay, Nilay Krishna</creatorcontrib><title>Hydrogen storage properties in rapidly solidified TiZrVCrNi high‐entropy alloys</title><title>Energy storage (Hoboken, N.J. : 2019)</title><description>The development of alloys with substantial hydrogen storage capacities is a potential solution to the demand for hydrogen storage in a future hydrogen‐based energy system. The synthesis, structural‐microstructural properties, and hydrogen storage performance of a multicomponent TiZrVCrNi high‐entropy melt‐spun ribbon have been discussed in the present investigation. The x‐ray diffraction and transmission electron microscopy investigations confirm that this as‐cast and melt‐spun alloy contains only a single C14‐type hexagonal (a = b = 5.02 Å, c = 8.15 Å, α = β = 90°, γ = 120°) Laves phase. The room temperature pressure composition isotherms were studied with a pressure range of 0 to 40 atm. Continuing from our previous study in which we reported a hydrogen storage capacity of ~1.5 wt% in an as‐cast high‐entropy alloy synthesized using Arc melting, the total hydrogen storage capacity of TiZrVCrNi high‐entropy melt‐spun ribbons was found to be ~2 wt% in this work. This study makes the way forward for greater hydrogen storage in melt‐spun ribbons. The observation of only minimal losses in storage capacity, even after 10 cycles of experiments on hydrogen absorption, shows that the reversible hydrogen storage capacity has high durability. To the best of our knowledge, these demonstrations are the first to present a study on the hydrogen storage capacity (~2 wt%) of the equiatomic TiZrVCrNi melt‐spun ribbons.</description><subject>Alloy development</subject><subject>Alloys</subject><subject>Electric arc melting</subject><subject>Entropy</subject><subject>High entropy alloys</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Laves phase</subject><subject>melt‐spun ribbon</subject><subject>multicomponent alloys</subject><subject>Rapid solidification</subject><subject>Ribbons</subject><subject>Room temperature</subject><subject>Storage capacity</subject><issn>2578-4862</issn><issn>2578-4862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EElWpxCNYYmFJcRw7TkdUFYpUgRCFgcVy7HPrKiTBToWy8Qg8I0-CozKwoBvuhu_u_-9H6Dwl05QQegWho1Oe0SM0olwUCStyevxnPkWTEHYkoimb5ZSP0OOyN77ZQI1D13i1Adz6pgXfOQjY1dir1pmqx6GpnHHWgcFr9-pf5v7e4a3bbL8_v6Du4k6PVVU1fThDJ1ZVASa_fYyebxbr-TJZPdzeza9XiaazjCalnpUqA625LXNRGmCZEMSyWGlRKFaC4jnhVggtVFFwMBpKa5QpRKYos9kYXRzuRsPv-_i53DV7X0dJOQgwSvNUROryQGnfhODByta7N-V7mRI5ZCaHzGTMLKLJAf1wFfT_cnLxtKYD_wP8ZnAB</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Kumar, Abhishek</creator><creator>Yadav, Thakur Prasad</creator><creator>Shaz, Mohammad Abu</creator><creator>Mukhopadhyay, Nilay Krishna</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>202402</creationdate><title>Hydrogen storage properties in rapidly solidified TiZrVCrNi high‐entropy alloys</title><author>Kumar, Abhishek ; Yadav, Thakur Prasad ; Shaz, Mohammad Abu ; Mukhopadhyay, Nilay Krishna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2932-bc9ba3ecc5fb67bde43770f4f4f188a4bea5605f77c7a885edcebfdad873a24f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloy development</topic><topic>Alloys</topic><topic>Electric arc melting</topic><topic>Entropy</topic><topic>High entropy alloys</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Laves phase</topic><topic>melt‐spun ribbon</topic><topic>multicomponent alloys</topic><topic>Rapid solidification</topic><topic>Ribbons</topic><topic>Room temperature</topic><topic>Storage capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Abhishek</creatorcontrib><creatorcontrib>Yadav, Thakur Prasad</creatorcontrib><creatorcontrib>Shaz, Mohammad Abu</creatorcontrib><creatorcontrib>Mukhopadhyay, Nilay Krishna</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Energy storage (Hoboken, N.J. : 2019)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Abhishek</au><au>Yadav, Thakur Prasad</au><au>Shaz, Mohammad Abu</au><au>Mukhopadhyay, Nilay Krishna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen storage properties in rapidly solidified TiZrVCrNi high‐entropy alloys</atitle><jtitle>Energy storage (Hoboken, N.J. : 2019)</jtitle><date>2024-02</date><risdate>2024</risdate><volume>6</volume><issue>1</issue><epage>n/a</epage><issn>2578-4862</issn><eissn>2578-4862</eissn><abstract>The development of alloys with substantial hydrogen storage capacities is a potential solution to the demand for hydrogen storage in a future hydrogen‐based energy system. The synthesis, structural‐microstructural properties, and hydrogen storage performance of a multicomponent TiZrVCrNi high‐entropy melt‐spun ribbon have been discussed in the present investigation. The x‐ray diffraction and transmission electron microscopy investigations confirm that this as‐cast and melt‐spun alloy contains only a single C14‐type hexagonal (a = b = 5.02 Å, c = 8.15 Å, α = β = 90°, γ = 120°) Laves phase. The room temperature pressure composition isotherms were studied with a pressure range of 0 to 40 atm. Continuing from our previous study in which we reported a hydrogen storage capacity of ~1.5 wt% in an as‐cast high‐entropy alloy synthesized using Arc melting, the total hydrogen storage capacity of TiZrVCrNi high‐entropy melt‐spun ribbons was found to be ~2 wt% in this work. This study makes the way forward for greater hydrogen storage in melt‐spun ribbons. The observation of only minimal losses in storage capacity, even after 10 cycles of experiments on hydrogen absorption, shows that the reversible hydrogen storage capacity has high durability. To the best of our knowledge, these demonstrations are the first to present a study on the hydrogen storage capacity (~2 wt%) of the equiatomic TiZrVCrNi melt‐spun ribbons.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/est2.532</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2578-4862 |
ispartof | Energy storage (Hoboken, N.J. : 2019), 2024-02, Vol.6 (1), p.n/a |
issn | 2578-4862 2578-4862 |
language | eng |
recordid | cdi_proquest_journals_2932422617 |
source | Wiley Journals |
subjects | Alloy development Alloys Electric arc melting Entropy High entropy alloys Hydrogen Hydrogen storage Laves phase melt‐spun ribbon multicomponent alloys Rapid solidification Ribbons Room temperature Storage capacity |
title | Hydrogen storage properties in rapidly solidified TiZrVCrNi high‐entropy alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A04%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20storage%20properties%20in%20rapidly%20solidified%20TiZrVCrNi%20high%E2%80%90entropy%20alloys&rft.jtitle=Energy%20storage%20(Hoboken,%20N.J.%20:%202019)&rft.au=Kumar,%20Abhishek&rft.date=2024-02&rft.volume=6&rft.issue=1&rft.epage=n/a&rft.issn=2578-4862&rft.eissn=2578-4862&rft_id=info:doi/10.1002/est2.532&rft_dat=%3Cproquest_cross%3E2932422617%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932422617&rft_id=info:pmid/&rfr_iscdi=true |