Integrated Modeling of Process–Microstructure–Property Relations in Friction Stir Additive Manufacturing
Friction stir additive manufacturing is a newly developed solid-state additive manufacturing technology. The material in the stirring zone can be re-stirred and reheated, and mechanical properties can be changed along the building direction. An integrated model is developed to investigate the intern...
Gespeichert in:
Veröffentlicht in: | Acta metallurgica sinica : English letters 2020, Vol.33 (1), p.75-87 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 87 |
---|---|
container_issue | 1 |
container_start_page | 75 |
container_title | Acta metallurgica sinica : English letters |
container_volume | 33 |
creator | Zhang, Zhao Tan, Zhi-Jun Li, Jian-Yu Zu, Yu-Fei Sha, Jian-Jun |
description | Friction stir additive manufacturing is a newly developed solid-state additive manufacturing technology. The material in the stirring zone can be re-stirred and reheated, and mechanical properties can be changed along the building direction. An integrated model is developed to investigate the internal relations of process, microstructure and mechanical properties. Moving heat source model is used to simulate the friction stir additive manufacturing process to obtain the temperature histories, which are used in the following microstructural simulations. Monte Carlo method is used for simulation of recrystallization and grain growth. Precipitate evolution model is used for calculation of precipitate size distributions. Mechanical property is then predicted. Experiments are used for validation of the predicted grains and hardness. Results indicate that the average grain sizes on different layers depend on the temperature in stirring and re-stirring processes. With the increase in building height, average grain size is decreased and hardness is increased. The increase in layer thickness can lead to temperature decrease in reheating and re-stirring processes and then lead to the decrease in average grain size and increase of hardness in stir zone. |
doi_str_mv | 10.1007/s40195-019-00945-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932392032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932392032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-1546e70f20f53b5e2e0ee14b6b539e9a6e5af786794de582e2827fa98208b3d53</originalsourceid><addsrcrecordid>eNp9UMtKxDAUDaLgOPoDrgKuq3k0bbMcBkcHZlB8rEPa3gwZaluTVHDnP_iHfompFdy5OZf7OOdyDkLnlFxSQvIrnxIqRRIhIUSmIpEHaMaoTBPKCnmIZvEqS3Iq6TE68X4fO5aKfIaadRtg53SAGm-7Ghrb7nBn8L3rKvD-6-NzayvX-eCGKgwO4iCuenDhHT9Ao4PtWo9ti1fOVmODH4N1eFHXNtg3wFvdDkaP1Ch8io6Mbjyc_dY5el5dPy1vk83dzXq52CQVz3hIqEgzyIlhxAheCmBAAGhaZqXgEqTOQGiTF1ku0xpEwYAVLDdaFowUJa8Fn6OLSbd33esAPqh9N7g2vlRMcsYlIxHniE1Xoz_vwKje2Rft3hUlakxVTamqCOonVSUjiU8k34-OwP1J_8P6Bs1xfgo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932392032</pqid></control><display><type>article</type><title>Integrated Modeling of Process–Microstructure–Property Relations in Friction Stir Additive Manufacturing</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Zhang, Zhao ; Tan, Zhi-Jun ; Li, Jian-Yu ; Zu, Yu-Fei ; Sha, Jian-Jun</creator><creatorcontrib>Zhang, Zhao ; Tan, Zhi-Jun ; Li, Jian-Yu ; Zu, Yu-Fei ; Sha, Jian-Jun</creatorcontrib><description>Friction stir additive manufacturing is a newly developed solid-state additive manufacturing technology. The material in the stirring zone can be re-stirred and reheated, and mechanical properties can be changed along the building direction. An integrated model is developed to investigate the internal relations of process, microstructure and mechanical properties. Moving heat source model is used to simulate the friction stir additive manufacturing process to obtain the temperature histories, which are used in the following microstructural simulations. Monte Carlo method is used for simulation of recrystallization and grain growth. Precipitate evolution model is used for calculation of precipitate size distributions. Mechanical property is then predicted. Experiments are used for validation of the predicted grains and hardness. Results indicate that the average grain sizes on different layers depend on the temperature in stirring and re-stirring processes. With the increase in building height, average grain size is decreased and hardness is increased. The increase in layer thickness can lead to temperature decrease in reheating and re-stirring processes and then lead to the decrease in average grain size and increase of hardness in stir zone.</description><identifier>ISSN: 1006-7191</identifier><identifier>EISSN: 2194-1289</identifier><identifier>DOI: 10.1007/s40195-019-00945-9</identifier><language>eng</language><publisher>Beijing: The Chinese Society for Metals</publisher><subject>Additive manufacturing ; Aluminum ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Corrosion and Coatings ; Friction ; Friction stir welding ; Grain growth ; Grain size ; Hardness ; Heat transfer ; Heating ; Manufacturing ; Materials Science ; Mechanical properties ; Metallic Materials ; Microstructure ; Monte Carlo simulation ; Nanotechnology ; Organometallic Chemistry ; Recrystallization ; Scanning electron microscopy ; Simulation ; Spectroscopy/Spectrometry ; Stirring ; Thickness ; Titanium alloys ; Tribology</subject><ispartof>Acta metallurgica sinica : English letters, 2020, Vol.33 (1), p.75-87</ispartof><rights>The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-1546e70f20f53b5e2e0ee14b6b539e9a6e5af786794de582e2827fa98208b3d53</citedby><cites>FETCH-LOGICAL-c363t-1546e70f20f53b5e2e0ee14b6b539e9a6e5af786794de582e2827fa98208b3d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40195-019-00945-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2932392032?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Tan, Zhi-Jun</creatorcontrib><creatorcontrib>Li, Jian-Yu</creatorcontrib><creatorcontrib>Zu, Yu-Fei</creatorcontrib><creatorcontrib>Sha, Jian-Jun</creatorcontrib><title>Integrated Modeling of Process–Microstructure–Property Relations in Friction Stir Additive Manufacturing</title><title>Acta metallurgica sinica : English letters</title><addtitle>Acta Metall. Sin. (Engl. Lett.)</addtitle><description>Friction stir additive manufacturing is a newly developed solid-state additive manufacturing technology. The material in the stirring zone can be re-stirred and reheated, and mechanical properties can be changed along the building direction. An integrated model is developed to investigate the internal relations of process, microstructure and mechanical properties. Moving heat source model is used to simulate the friction stir additive manufacturing process to obtain the temperature histories, which are used in the following microstructural simulations. Monte Carlo method is used for simulation of recrystallization and grain growth. Precipitate evolution model is used for calculation of precipitate size distributions. Mechanical property is then predicted. Experiments are used for validation of the predicted grains and hardness. Results indicate that the average grain sizes on different layers depend on the temperature in stirring and re-stirring processes. With the increase in building height, average grain size is decreased and hardness is increased. The increase in layer thickness can lead to temperature decrease in reheating and re-stirring processes and then lead to the decrease in average grain size and increase of hardness in stir zone.</description><subject>Additive manufacturing</subject><subject>Aluminum</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion and Coatings</subject><subject>Friction</subject><subject>Friction stir welding</subject><subject>Grain growth</subject><subject>Grain size</subject><subject>Hardness</subject><subject>Heat transfer</subject><subject>Heating</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Monte Carlo simulation</subject><subject>Nanotechnology</subject><subject>Organometallic Chemistry</subject><subject>Recrystallization</subject><subject>Scanning electron microscopy</subject><subject>Simulation</subject><subject>Spectroscopy/Spectrometry</subject><subject>Stirring</subject><subject>Thickness</subject><subject>Titanium alloys</subject><subject>Tribology</subject><issn>1006-7191</issn><issn>2194-1289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UMtKxDAUDaLgOPoDrgKuq3k0bbMcBkcHZlB8rEPa3gwZaluTVHDnP_iHfompFdy5OZf7OOdyDkLnlFxSQvIrnxIqRRIhIUSmIpEHaMaoTBPKCnmIZvEqS3Iq6TE68X4fO5aKfIaadRtg53SAGm-7Ghrb7nBn8L3rKvD-6-NzayvX-eCGKgwO4iCuenDhHT9Ao4PtWo9ti1fOVmODH4N1eFHXNtg3wFvdDkaP1Ch8io6Mbjyc_dY5el5dPy1vk83dzXq52CQVz3hIqEgzyIlhxAheCmBAAGhaZqXgEqTOQGiTF1ku0xpEwYAVLDdaFowUJa8Fn6OLSbd33esAPqh9N7g2vlRMcsYlIxHniE1Xoz_vwKje2Rft3hUlakxVTamqCOonVSUjiU8k34-OwP1J_8P6Bs1xfgo</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhang, Zhao</creator><creator>Tan, Zhi-Jun</creator><creator>Li, Jian-Yu</creator><creator>Zu, Yu-Fei</creator><creator>Sha, Jian-Jun</creator><general>The Chinese Society for Metals</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>2020</creationdate><title>Integrated Modeling of Process–Microstructure–Property Relations in Friction Stir Additive Manufacturing</title><author>Zhang, Zhao ; Tan, Zhi-Jun ; Li, Jian-Yu ; Zu, Yu-Fei ; Sha, Jian-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-1546e70f20f53b5e2e0ee14b6b539e9a6e5af786794de582e2827fa98208b3d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additive manufacturing</topic><topic>Aluminum</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion and Coatings</topic><topic>Friction</topic><topic>Friction stir welding</topic><topic>Grain growth</topic><topic>Grain size</topic><topic>Hardness</topic><topic>Heat transfer</topic><topic>Heating</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Monte Carlo simulation</topic><topic>Nanotechnology</topic><topic>Organometallic Chemistry</topic><topic>Recrystallization</topic><topic>Scanning electron microscopy</topic><topic>Simulation</topic><topic>Spectroscopy/Spectrometry</topic><topic>Stirring</topic><topic>Thickness</topic><topic>Titanium alloys</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Tan, Zhi-Jun</creatorcontrib><creatorcontrib>Li, Jian-Yu</creatorcontrib><creatorcontrib>Zu, Yu-Fei</creatorcontrib><creatorcontrib>Sha, Jian-Jun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Acta metallurgica sinica : English letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhao</au><au>Tan, Zhi-Jun</au><au>Li, Jian-Yu</au><au>Zu, Yu-Fei</au><au>Sha, Jian-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated Modeling of Process–Microstructure–Property Relations in Friction Stir Additive Manufacturing</atitle><jtitle>Acta metallurgica sinica : English letters</jtitle><stitle>Acta Metall. Sin. (Engl. Lett.)</stitle><date>2020</date><risdate>2020</risdate><volume>33</volume><issue>1</issue><spage>75</spage><epage>87</epage><pages>75-87</pages><issn>1006-7191</issn><eissn>2194-1289</eissn><abstract>Friction stir additive manufacturing is a newly developed solid-state additive manufacturing technology. The material in the stirring zone can be re-stirred and reheated, and mechanical properties can be changed along the building direction. An integrated model is developed to investigate the internal relations of process, microstructure and mechanical properties. Moving heat source model is used to simulate the friction stir additive manufacturing process to obtain the temperature histories, which are used in the following microstructural simulations. Monte Carlo method is used for simulation of recrystallization and grain growth. Precipitate evolution model is used for calculation of precipitate size distributions. Mechanical property is then predicted. Experiments are used for validation of the predicted grains and hardness. Results indicate that the average grain sizes on different layers depend on the temperature in stirring and re-stirring processes. With the increase in building height, average grain size is decreased and hardness is increased. The increase in layer thickness can lead to temperature decrease in reheating and re-stirring processes and then lead to the decrease in average grain size and increase of hardness in stir zone.</abstract><cop>Beijing</cop><pub>The Chinese Society for Metals</pub><doi>10.1007/s40195-019-00945-9</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1006-7191 |
ispartof | Acta metallurgica sinica : English letters, 2020, Vol.33 (1), p.75-87 |
issn | 1006-7191 2194-1289 |
language | eng |
recordid | cdi_proquest_journals_2932392032 |
source | SpringerLink Journals; Alma/SFX Local Collection; ProQuest Central |
subjects | Additive manufacturing Aluminum Characterization and Evaluation of Materials Chemistry and Materials Science Corrosion and Coatings Friction Friction stir welding Grain growth Grain size Hardness Heat transfer Heating Manufacturing Materials Science Mechanical properties Metallic Materials Microstructure Monte Carlo simulation Nanotechnology Organometallic Chemistry Recrystallization Scanning electron microscopy Simulation Spectroscopy/Spectrometry Stirring Thickness Titanium alloys Tribology |
title | Integrated Modeling of Process–Microstructure–Property Relations in Friction Stir Additive Manufacturing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A59%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20Modeling%20of%20Process%E2%80%93Microstructure%E2%80%93Property%20Relations%20in%20Friction%20Stir%20Additive%20Manufacturing&rft.jtitle=Acta%20metallurgica%20sinica%20:%20English%20letters&rft.au=Zhang,%20Zhao&rft.date=2020&rft.volume=33&rft.issue=1&rft.spage=75&rft.epage=87&rft.pages=75-87&rft.issn=1006-7191&rft.eissn=2194-1289&rft_id=info:doi/10.1007/s40195-019-00945-9&rft_dat=%3Cproquest_cross%3E2932392032%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932392032&rft_id=info:pmid/&rfr_iscdi=true |