A Hybrid Decision Making Framework for Personnel Selection Using BWM, MABAC and PROMETHEE
Personnel selection plays a vital role in the sustainable development of a company. Generally, both quantitative and qualitative criteria are considered in the personnel selection process. Hence, this research introduces crisp numbers and linguistic neutrosophic numbers (LNNs) simultaneously to expr...
Gespeichert in:
Veröffentlicht in: | International journal of fuzzy systems 2019-11, Vol.21 (8), p.2421-2434 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2434 |
---|---|
container_issue | 8 |
container_start_page | 2421 |
container_title | International journal of fuzzy systems |
container_volume | 21 |
creator | Luo, Sui-zhi Xing, Li-ning |
description | Personnel selection plays a vital role in the sustainable development of a company. Generally, both quantitative and qualitative criteria are considered in the personnel selection process. Hence, this research introduces crisp numbers and linguistic neutrosophic numbers (LNNs) simultaneously to express hybrid evaluation information. Then, the multi-attributive border approximation area comparison (MABAC) method is recommended to select ideal personnel because of its simplicity and precision. Some criteria have the feature of non-compensation in real personnel selection, but they are presumed to be compensatory in MABAC. To overcome this limitation, the idea of preference ranking organization method for enrichment evaluations (PROMETHEE) is integrated into MABAC. Besides, the traditional best–worst method (BWM) is modified with linguistic values to obtain the criteria weights more appropriately. As a result, a hybrid decision making framework is constructed to tackle personnel selection issues. Finally, an illustrative example of personnel selection in an IT company is given to show the procedures of the proposed method after the assessment criteria system is built. Moreover, some comparative analyses are made to justify the practicability and strengths of our method. Results demonstrate that the hybrid decision making framework is eligible and helpful for personnel selection in enterprises. |
doi_str_mv | 10.1007/s40815-019-00745-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932368335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932368335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-1a62056165bf1c8643dbb3048e7485f341f806e21c4f4805f5c0b8f1d6eb23f53</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsGj_gKsBt47OnVeSZVpTKzS0aIu4GvKYKbFtUmdapP_exAjuXF0OfOdc-BC6AXoPlAYPXtAQJKEQkTYKScQZGjCIIsIZwDkagFSMMBFEl2jofZVTDkxxqfgAvcd4espdVeJHU1S-amqcZpuqXuOJy3bmq3EbbBuHF8b5pq7NFr-arSkOHbjyHTd6S-9wGo_iMc7qEi9e5mmynCbJNbqw2dab4e-9QqtJshxPyWz-9DyOZ6TgATsQyBSjUoGSuYUiVIKXec6pCE0gQmm5ABtSZRgUwoqQSisLmocWSmVyxq3kV-i239275vNo_EF_NEdXty81izjjKuS8o1hPFa7x3hmr967aZe6kgerOou4t6tai_rGoRVvifcm3cL027m_6n9Y3Xgtxew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932368335</pqid></control><display><type>article</type><title>A Hybrid Decision Making Framework for Personnel Selection Using BWM, MABAC and PROMETHEE</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Luo, Sui-zhi ; Xing, Li-ning</creator><creatorcontrib>Luo, Sui-zhi ; Xing, Li-ning</creatorcontrib><description>Personnel selection plays a vital role in the sustainable development of a company. Generally, both quantitative and qualitative criteria are considered in the personnel selection process. Hence, this research introduces crisp numbers and linguistic neutrosophic numbers (LNNs) simultaneously to express hybrid evaluation information. Then, the multi-attributive border approximation area comparison (MABAC) method is recommended to select ideal personnel because of its simplicity and precision. Some criteria have the feature of non-compensation in real personnel selection, but they are presumed to be compensatory in MABAC. To overcome this limitation, the idea of preference ranking organization method for enrichment evaluations (PROMETHEE) is integrated into MABAC. Besides, the traditional best–worst method (BWM) is modified with linguistic values to obtain the criteria weights more appropriately. As a result, a hybrid decision making framework is constructed to tackle personnel selection issues. Finally, an illustrative example of personnel selection in an IT company is given to show the procedures of the proposed method after the assessment criteria system is built. Moreover, some comparative analyses are made to justify the practicability and strengths of our method. Results demonstrate that the hybrid decision making framework is eligible and helpful for personnel selection in enterprises.</description><identifier>ISSN: 1562-2479</identifier><identifier>EISSN: 2199-3211</identifier><identifier>DOI: 10.1007/s40815-019-00745-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Compensation ; Computational Intelligence ; Criteria ; Decision making ; Engineering ; Fuzzy sets ; Linguistics ; Management Science ; Methods ; Operations Research ; Personnel selection ; Preferences ; Sustainable development</subject><ispartof>International journal of fuzzy systems, 2019-11, Vol.21 (8), p.2421-2434</ispartof><rights>Taiwan Fuzzy Systems Association 2019</rights><rights>Taiwan Fuzzy Systems Association 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-1a62056165bf1c8643dbb3048e7485f341f806e21c4f4805f5c0b8f1d6eb23f53</citedby><cites>FETCH-LOGICAL-c372t-1a62056165bf1c8643dbb3048e7485f341f806e21c4f4805f5c0b8f1d6eb23f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40815-019-00745-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2932368335?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Luo, Sui-zhi</creatorcontrib><creatorcontrib>Xing, Li-ning</creatorcontrib><title>A Hybrid Decision Making Framework for Personnel Selection Using BWM, MABAC and PROMETHEE</title><title>International journal of fuzzy systems</title><addtitle>Int. J. Fuzzy Syst</addtitle><description>Personnel selection plays a vital role in the sustainable development of a company. Generally, both quantitative and qualitative criteria are considered in the personnel selection process. Hence, this research introduces crisp numbers and linguistic neutrosophic numbers (LNNs) simultaneously to express hybrid evaluation information. Then, the multi-attributive border approximation area comparison (MABAC) method is recommended to select ideal personnel because of its simplicity and precision. Some criteria have the feature of non-compensation in real personnel selection, but they are presumed to be compensatory in MABAC. To overcome this limitation, the idea of preference ranking organization method for enrichment evaluations (PROMETHEE) is integrated into MABAC. Besides, the traditional best–worst method (BWM) is modified with linguistic values to obtain the criteria weights more appropriately. As a result, a hybrid decision making framework is constructed to tackle personnel selection issues. Finally, an illustrative example of personnel selection in an IT company is given to show the procedures of the proposed method after the assessment criteria system is built. Moreover, some comparative analyses are made to justify the practicability and strengths of our method. Results demonstrate that the hybrid decision making framework is eligible and helpful for personnel selection in enterprises.</description><subject>Artificial Intelligence</subject><subject>Compensation</subject><subject>Computational Intelligence</subject><subject>Criteria</subject><subject>Decision making</subject><subject>Engineering</subject><subject>Fuzzy sets</subject><subject>Linguistics</subject><subject>Management Science</subject><subject>Methods</subject><subject>Operations Research</subject><subject>Personnel selection</subject><subject>Preferences</subject><subject>Sustainable development</subject><issn>1562-2479</issn><issn>2199-3211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLw0AUhQdRsGj_gKsBt47OnVeSZVpTKzS0aIu4GvKYKbFtUmdapP_exAjuXF0OfOdc-BC6AXoPlAYPXtAQJKEQkTYKScQZGjCIIsIZwDkagFSMMBFEl2jofZVTDkxxqfgAvcd4espdVeJHU1S-amqcZpuqXuOJy3bmq3EbbBuHF8b5pq7NFr-arSkOHbjyHTd6S-9wGo_iMc7qEi9e5mmynCbJNbqw2dab4e-9QqtJshxPyWz-9DyOZ6TgATsQyBSjUoGSuYUiVIKXec6pCE0gQmm5ABtSZRgUwoqQSisLmocWSmVyxq3kV-i239275vNo_EF_NEdXty81izjjKuS8o1hPFa7x3hmr967aZe6kgerOou4t6tai_rGoRVvifcm3cL027m_6n9Y3Xgtxew</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Luo, Sui-zhi</creator><creator>Xing, Li-ning</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20191101</creationdate><title>A Hybrid Decision Making Framework for Personnel Selection Using BWM, MABAC and PROMETHEE</title><author>Luo, Sui-zhi ; Xing, Li-ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-1a62056165bf1c8643dbb3048e7485f341f806e21c4f4805f5c0b8f1d6eb23f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Compensation</topic><topic>Computational Intelligence</topic><topic>Criteria</topic><topic>Decision making</topic><topic>Engineering</topic><topic>Fuzzy sets</topic><topic>Linguistics</topic><topic>Management Science</topic><topic>Methods</topic><topic>Operations Research</topic><topic>Personnel selection</topic><topic>Preferences</topic><topic>Sustainable development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Sui-zhi</creatorcontrib><creatorcontrib>Xing, Li-ning</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Sui-zhi</au><au>Xing, Li-ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Decision Making Framework for Personnel Selection Using BWM, MABAC and PROMETHEE</atitle><jtitle>International journal of fuzzy systems</jtitle><stitle>Int. J. Fuzzy Syst</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>21</volume><issue>8</issue><spage>2421</spage><epage>2434</epage><pages>2421-2434</pages><issn>1562-2479</issn><eissn>2199-3211</eissn><abstract>Personnel selection plays a vital role in the sustainable development of a company. Generally, both quantitative and qualitative criteria are considered in the personnel selection process. Hence, this research introduces crisp numbers and linguistic neutrosophic numbers (LNNs) simultaneously to express hybrid evaluation information. Then, the multi-attributive border approximation area comparison (MABAC) method is recommended to select ideal personnel because of its simplicity and precision. Some criteria have the feature of non-compensation in real personnel selection, but they are presumed to be compensatory in MABAC. To overcome this limitation, the idea of preference ranking organization method for enrichment evaluations (PROMETHEE) is integrated into MABAC. Besides, the traditional best–worst method (BWM) is modified with linguistic values to obtain the criteria weights more appropriately. As a result, a hybrid decision making framework is constructed to tackle personnel selection issues. Finally, an illustrative example of personnel selection in an IT company is given to show the procedures of the proposed method after the assessment criteria system is built. Moreover, some comparative analyses are made to justify the practicability and strengths of our method. Results demonstrate that the hybrid decision making framework is eligible and helpful for personnel selection in enterprises.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40815-019-00745-4</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1562-2479 |
ispartof | International journal of fuzzy systems, 2019-11, Vol.21 (8), p.2421-2434 |
issn | 1562-2479 2199-3211 |
language | eng |
recordid | cdi_proquest_journals_2932368335 |
source | SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Artificial Intelligence Compensation Computational Intelligence Criteria Decision making Engineering Fuzzy sets Linguistics Management Science Methods Operations Research Personnel selection Preferences Sustainable development |
title | A Hybrid Decision Making Framework for Personnel Selection Using BWM, MABAC and PROMETHEE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A38%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Decision%20Making%20Framework%20for%20Personnel%20Selection%20Using%20BWM,%20MABAC%20and%20PROMETHEE&rft.jtitle=International%20journal%20of%20fuzzy%20systems&rft.au=Luo,%20Sui-zhi&rft.date=2019-11-01&rft.volume=21&rft.issue=8&rft.spage=2421&rft.epage=2434&rft.pages=2421-2434&rft.issn=1562-2479&rft.eissn=2199-3211&rft_id=info:doi/10.1007/s40815-019-00745-4&rft_dat=%3Cproquest_cross%3E2932368335%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932368335&rft_id=info:pmid/&rfr_iscdi=true |