Model Order Reduction with Neural Networks: Application to Laminar and Turbulent Flows

We investigate the capability of neural network-based model order reduction, i.e., autoencoder (AE), for fluid flows. As an example model, an AE which comprises of convolutional neural networks and multi-layer perceptrons is considered in this study. The AE model is assessed with four canonical flui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN computer science 2021-11, Vol.2 (6), p.467, Article 467
Hauptverfasser: Fukami, Kai, Hasegawa, Kazuto, Nakamura, Taichi, Morimoto, Masaki, Fukagata, Koji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 467
container_title SN computer science
container_volume 2
creator Fukami, Kai
Hasegawa, Kazuto
Nakamura, Taichi
Morimoto, Masaki
Fukagata, Koji
description We investigate the capability of neural network-based model order reduction, i.e., autoencoder (AE), for fluid flows. As an example model, an AE which comprises of convolutional neural networks and multi-layer perceptrons is considered in this study. The AE model is assessed with four canonical fluid flows, namely: (1) two-dimensional cylinder wake, (2) its transient process, (3) NOAA sea surface temperature, and (4) a cross-sectional field of turbulent channel flow, in terms of a number of latent modes, the choice of nonlinear activation functions, and the number of weights contained in the AE model. We find that the AE models are sensitive to the choice of the aforementioned parameters depending on the target flows. Finally, we foresee the extensional applications and perspectives of machine learning based order reduction for numerical and experimental studies in the fluid dynamics community.
doi_str_mv 10.1007/s42979-021-00867-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932344556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932344556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2783-8f6d9fb95887617fc3aaae53d6fcb57131804c3e0079d21f045a4578aa3b3b283</originalsourceid><addsrcrecordid>eNp9kE1Lw0AURQdRsNT-AVcDrkfn-8NdKVaFakGquBsmyURT00ycSSj-e2MjuHP13uLc-3gHgHOCLwnG6ipxapRBmBKEsZYKsSMwoVISpA1Wx4edImPE6ymYpbTFGFOBOZdiAl4eQuFruI6Fj_DJF33eVaGB-6p7h4--j64eRrcP8SNdw3nb1lXuDkQX4MrtqsZF6JoCbvqY9bVvOriswz6dgZPS1cnPfucUPC9vNos7tFrf3i_mK5RTpRnSpSxMmRmhtZJElTlzznnBClnmmVCEEY15zvzwpSkoKTEXjgulnWMZy6hmU3Ax9rYxfPY-dXYb-tgMJy01jDLOhZADRUcqjyGl6Evbxmrn4pcl2P4otKNCOyi0B4WWDSE2htIAN28-_lX_k_oG3O9zWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932344556</pqid></control><display><type>article</type><title>Model Order Reduction with Neural Networks: Application to Laminar and Turbulent Flows</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Fukami, Kai ; Hasegawa, Kazuto ; Nakamura, Taichi ; Morimoto, Masaki ; Fukagata, Koji</creator><creatorcontrib>Fukami, Kai ; Hasegawa, Kazuto ; Nakamura, Taichi ; Morimoto, Masaki ; Fukagata, Koji</creatorcontrib><description>We investigate the capability of neural network-based model order reduction, i.e., autoencoder (AE), for fluid flows. As an example model, an AE which comprises of convolutional neural networks and multi-layer perceptrons is considered in this study. The AE model is assessed with four canonical fluid flows, namely: (1) two-dimensional cylinder wake, (2) its transient process, (3) NOAA sea surface temperature, and (4) a cross-sectional field of turbulent channel flow, in terms of a number of latent modes, the choice of nonlinear activation functions, and the number of weights contained in the AE model. We find that the AE models are sensitive to the choice of the aforementioned parameters depending on the target flows. Finally, we foresee the extensional applications and perspectives of machine learning based order reduction for numerical and experimental studies in the fluid dynamics community.</description><identifier>ISSN: 2662-995X</identifier><identifier>EISSN: 2661-8907</identifier><identifier>DOI: 10.1007/s42979-021-00867-3</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Artificial neural networks ; Channel flow ; Computer Imaging ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Information Theory ; Dynamical systems ; Fluid dynamics ; Fluid flow ; Information Systems and Communication Service ; Laminar flow ; Machine learning ; Methods ; Model reduction ; Multilayer perceptrons ; Multilayers ; Neural networks ; Original Research ; Parameter sensitivity ; Pattern Recognition and Graphics ; Reynolds number ; Sea surface temperature ; Software Engineering/Programming and Operating Systems ; Turbulent flow ; Two dimensional flow ; Vision</subject><ispartof>SN computer science, 2021-11, Vol.2 (6), p.467, Article 467</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2783-8f6d9fb95887617fc3aaae53d6fcb57131804c3e0079d21f045a4578aa3b3b283</citedby><cites>FETCH-LOGICAL-c2783-8f6d9fb95887617fc3aaae53d6fcb57131804c3e0079d21f045a4578aa3b3b283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42979-021-00867-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2932344556?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Fukami, Kai</creatorcontrib><creatorcontrib>Hasegawa, Kazuto</creatorcontrib><creatorcontrib>Nakamura, Taichi</creatorcontrib><creatorcontrib>Morimoto, Masaki</creatorcontrib><creatorcontrib>Fukagata, Koji</creatorcontrib><title>Model Order Reduction with Neural Networks: Application to Laminar and Turbulent Flows</title><title>SN computer science</title><addtitle>SN COMPUT. SCI</addtitle><description>We investigate the capability of neural network-based model order reduction, i.e., autoencoder (AE), for fluid flows. As an example model, an AE which comprises of convolutional neural networks and multi-layer perceptrons is considered in this study. The AE model is assessed with four canonical fluid flows, namely: (1) two-dimensional cylinder wake, (2) its transient process, (3) NOAA sea surface temperature, and (4) a cross-sectional field of turbulent channel flow, in terms of a number of latent modes, the choice of nonlinear activation functions, and the number of weights contained in the AE model. We find that the AE models are sensitive to the choice of the aforementioned parameters depending on the target flows. Finally, we foresee the extensional applications and perspectives of machine learning based order reduction for numerical and experimental studies in the fluid dynamics community.</description><subject>Artificial neural networks</subject><subject>Channel flow</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>Dynamical systems</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Information Systems and Communication Service</subject><subject>Laminar flow</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Model reduction</subject><subject>Multilayer perceptrons</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Original Research</subject><subject>Parameter sensitivity</subject><subject>Pattern Recognition and Graphics</subject><subject>Reynolds number</subject><subject>Sea surface temperature</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Turbulent flow</subject><subject>Two dimensional flow</subject><subject>Vision</subject><issn>2662-995X</issn><issn>2661-8907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1Lw0AURQdRsNT-AVcDrkfn-8NdKVaFakGquBsmyURT00ycSSj-e2MjuHP13uLc-3gHgHOCLwnG6ipxapRBmBKEsZYKsSMwoVISpA1Wx4edImPE6ymYpbTFGFOBOZdiAl4eQuFruI6Fj_DJF33eVaGB-6p7h4--j64eRrcP8SNdw3nb1lXuDkQX4MrtqsZF6JoCbvqY9bVvOriswz6dgZPS1cnPfucUPC9vNos7tFrf3i_mK5RTpRnSpSxMmRmhtZJElTlzznnBClnmmVCEEY15zvzwpSkoKTEXjgulnWMZy6hmU3Ax9rYxfPY-dXYb-tgMJy01jDLOhZADRUcqjyGl6Evbxmrn4pcl2P4otKNCOyi0B4WWDSE2htIAN28-_lX_k_oG3O9zWA</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Fukami, Kai</creator><creator>Hasegawa, Kazuto</creator><creator>Nakamura, Taichi</creator><creator>Morimoto, Masaki</creator><creator>Fukagata, Koji</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20211101</creationdate><title>Model Order Reduction with Neural Networks: Application to Laminar and Turbulent Flows</title><author>Fukami, Kai ; Hasegawa, Kazuto ; Nakamura, Taichi ; Morimoto, Masaki ; Fukagata, Koji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2783-8f6d9fb95887617fc3aaae53d6fcb57131804c3e0079d21f045a4578aa3b3b283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Channel flow</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>Dynamical systems</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Information Systems and Communication Service</topic><topic>Laminar flow</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Model reduction</topic><topic>Multilayer perceptrons</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Original Research</topic><topic>Parameter sensitivity</topic><topic>Pattern Recognition and Graphics</topic><topic>Reynolds number</topic><topic>Sea surface temperature</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Turbulent flow</topic><topic>Two dimensional flow</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fukami, Kai</creatorcontrib><creatorcontrib>Hasegawa, Kazuto</creatorcontrib><creatorcontrib>Nakamura, Taichi</creatorcontrib><creatorcontrib>Morimoto, Masaki</creatorcontrib><creatorcontrib>Fukagata, Koji</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SN computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fukami, Kai</au><au>Hasegawa, Kazuto</au><au>Nakamura, Taichi</au><au>Morimoto, Masaki</au><au>Fukagata, Koji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model Order Reduction with Neural Networks: Application to Laminar and Turbulent Flows</atitle><jtitle>SN computer science</jtitle><stitle>SN COMPUT. SCI</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>2</volume><issue>6</issue><spage>467</spage><pages>467-</pages><artnum>467</artnum><issn>2662-995X</issn><eissn>2661-8907</eissn><abstract>We investigate the capability of neural network-based model order reduction, i.e., autoencoder (AE), for fluid flows. As an example model, an AE which comprises of convolutional neural networks and multi-layer perceptrons is considered in this study. The AE model is assessed with four canonical fluid flows, namely: (1) two-dimensional cylinder wake, (2) its transient process, (3) NOAA sea surface temperature, and (4) a cross-sectional field of turbulent channel flow, in terms of a number of latent modes, the choice of nonlinear activation functions, and the number of weights contained in the AE model. We find that the AE models are sensitive to the choice of the aforementioned parameters depending on the target flows. Finally, we foresee the extensional applications and perspectives of machine learning based order reduction for numerical and experimental studies in the fluid dynamics community.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s42979-021-00867-3</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2662-995X
ispartof SN computer science, 2021-11, Vol.2 (6), p.467, Article 467
issn 2662-995X
2661-8907
language eng
recordid cdi_proquest_journals_2932344556
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Artificial neural networks
Channel flow
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Dynamical systems
Fluid dynamics
Fluid flow
Information Systems and Communication Service
Laminar flow
Machine learning
Methods
Model reduction
Multilayer perceptrons
Multilayers
Neural networks
Original Research
Parameter sensitivity
Pattern Recognition and Graphics
Reynolds number
Sea surface temperature
Software Engineering/Programming and Operating Systems
Turbulent flow
Two dimensional flow
Vision
title Model Order Reduction with Neural Networks: Application to Laminar and Turbulent Flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20Order%20Reduction%20with%20Neural%20Networks:%20Application%20to%20Laminar%20and%20Turbulent%20Flows&rft.jtitle=SN%20computer%20science&rft.au=Fukami,%20Kai&rft.date=2021-11-01&rft.volume=2&rft.issue=6&rft.spage=467&rft.pages=467-&rft.artnum=467&rft.issn=2662-995X&rft.eissn=2661-8907&rft_id=info:doi/10.1007/s42979-021-00867-3&rft_dat=%3Cproquest_cross%3E2932344556%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932344556&rft_id=info:pmid/&rfr_iscdi=true