Monte Carlo Simulation for Trading Under a Lévy-Driven Mean-Reverting Framework

We present a Monte Carlo approach to pairs trading on mean-reverting spreads modelled by Lévy-driven Ornstein-Uhlenbeck processes. Specifically, we focus on using a variance gamma driving process, an infinite activity pure jump process to allow for more flexible models of the price spread than is av...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical finance. 2023-07, Vol.30 (4), p.207-230
Hauptverfasser: Leung, Tim, Lu, Kevin W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 230
container_issue 4
container_start_page 207
container_title Applied mathematical finance.
container_volume 30
creator Leung, Tim
Lu, Kevin W.
description We present a Monte Carlo approach to pairs trading on mean-reverting spreads modelled by Lévy-driven Ornstein-Uhlenbeck processes. Specifically, we focus on using a variance gamma driving process, an infinite activity pure jump process to allow for more flexible models of the price spread than is available in the classical model. However, this generalization comes at the cost of not having analytic formulas, so we apply Monte Carlo methods to determine optimal trading levels and develop a variance reduction technique using control variates. Within this framework, we numerically examine how the optimal trading strategies are affected by the parameters of the model. In addition, we extend our method to bivariate spreads modelled using a weak variance alpha-gamma driving process, and explore the effect of correlation on these trades.
doi_str_mv 10.1080/1350486X.2024.2316139
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2932325305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932325305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3389-1853d4b36b669722c363a9eb28a4a45b44b75de41bed73b436642a6d4c84258a3</originalsourceid><addsrcrecordid>eNp9kNFKwzAUhoMoOKePIAS87kxykrS9U6ZTYUPRDXYX0jaVzjbRtJvskXwOX8yMTrzz6pyL7z8_50PonJIRJQm5pCAIT-RyxAjjIwZUUkgP0IByKSMOFA7DHphoBx2jk7ZdEUJZIvkAPc2c7Qwea187_FI161p3lbO4dB7PvS4q-4oXtjAeazz9_tpsoxtfbYzFM6Nt9Gw2xnc7ZuJ1Yz6dfztFR6WuW3O2n0O0mNzOx_fR9PHuYXw9jXKAJI1oIqDgGchMyjRmLAcJOjUZSzTXXGScZ7EoDKeZKWLIOEjJmZYFzxPORKJhiC76u-_efaxN26mVW3sbKhVLgQETQESgRE_l3rWtN6V691Wj_VZRonby1K88tZOn9vJCDvc5kztbtX-plBAuYiDLgFz1SGWDrEaH5-tCdXpbO196bfMQg_9bfgBay3_J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932325305</pqid></control><display><type>article</type><title>Monte Carlo Simulation for Trading Under a Lévy-Driven Mean-Reverting Framework</title><source>Business Source Complete (BSC) 商管财经类全文数据库(完整版)</source><creator>Leung, Tim ; Lu, Kevin W.</creator><creatorcontrib>Leung, Tim ; Lu, Kevin W.</creatorcontrib><description>We present a Monte Carlo approach to pairs trading on mean-reverting spreads modelled by Lévy-driven Ornstein-Uhlenbeck processes. Specifically, we focus on using a variance gamma driving process, an infinite activity pure jump process to allow for more flexible models of the price spread than is available in the classical model. However, this generalization comes at the cost of not having analytic formulas, so we apply Monte Carlo methods to determine optimal trading levels and develop a variance reduction technique using control variates. Within this framework, we numerically examine how the optimal trading strategies are affected by the parameters of the model. In addition, we extend our method to bivariate spreads modelled using a weak variance alpha-gamma driving process, and explore the effect of correlation on these trades.</description><identifier>ISSN: 1350-486X</identifier><identifier>EISSN: 1466-4313</identifier><identifier>DOI: 10.1080/1350486X.2024.2316139</identifier><language>eng</language><publisher>Abingdon: Routledge</publisher><subject>Bivariate analysis ; Cost analysis ; Lévy process ; mean reversion ; Monte Carlo simulation ; Ornstein-Uhlenbeck process ; Pairs trading ; variance gamma process</subject><ispartof>Applied mathematical finance., 2023-07, Vol.30 (4), p.207-230</ispartof><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2024</rights><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3389-1853d4b36b669722c363a9eb28a4a45b44b75de41bed73b436642a6d4c84258a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Leung, Tim</creatorcontrib><creatorcontrib>Lu, Kevin W.</creatorcontrib><title>Monte Carlo Simulation for Trading Under a Lévy-Driven Mean-Reverting Framework</title><title>Applied mathematical finance.</title><description>We present a Monte Carlo approach to pairs trading on mean-reverting spreads modelled by Lévy-driven Ornstein-Uhlenbeck processes. Specifically, we focus on using a variance gamma driving process, an infinite activity pure jump process to allow for more flexible models of the price spread than is available in the classical model. However, this generalization comes at the cost of not having analytic formulas, so we apply Monte Carlo methods to determine optimal trading levels and develop a variance reduction technique using control variates. Within this framework, we numerically examine how the optimal trading strategies are affected by the parameters of the model. In addition, we extend our method to bivariate spreads modelled using a weak variance alpha-gamma driving process, and explore the effect of correlation on these trades.</description><subject>Bivariate analysis</subject><subject>Cost analysis</subject><subject>Lévy process</subject><subject>mean reversion</subject><subject>Monte Carlo simulation</subject><subject>Ornstein-Uhlenbeck process</subject><subject>Pairs trading</subject><subject>variance gamma process</subject><issn>1350-486X</issn><issn>1466-4313</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kNFKwzAUhoMoOKePIAS87kxykrS9U6ZTYUPRDXYX0jaVzjbRtJvskXwOX8yMTrzz6pyL7z8_50PonJIRJQm5pCAIT-RyxAjjIwZUUkgP0IByKSMOFA7DHphoBx2jk7ZdEUJZIvkAPc2c7Qwea187_FI161p3lbO4dB7PvS4q-4oXtjAeazz9_tpsoxtfbYzFM6Nt9Gw2xnc7ZuJ1Yz6dfztFR6WuW3O2n0O0mNzOx_fR9PHuYXw9jXKAJI1oIqDgGchMyjRmLAcJOjUZSzTXXGScZ7EoDKeZKWLIOEjJmZYFzxPORKJhiC76u-_efaxN26mVW3sbKhVLgQETQESgRE_l3rWtN6V691Wj_VZRonby1K88tZOn9vJCDvc5kztbtX-plBAuYiDLgFz1SGWDrEaH5-tCdXpbO196bfMQg_9bfgBay3_J</recordid><startdate>20230704</startdate><enddate>20230704</enddate><creator>Leung, Tim</creator><creator>Lu, Kevin W.</creator><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><scope>0YH</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20230704</creationdate><title>Monte Carlo Simulation for Trading Under a Lévy-Driven Mean-Reverting Framework</title><author>Leung, Tim ; Lu, Kevin W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3389-1853d4b36b669722c363a9eb28a4a45b44b75de41bed73b436642a6d4c84258a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bivariate analysis</topic><topic>Cost analysis</topic><topic>Lévy process</topic><topic>mean reversion</topic><topic>Monte Carlo simulation</topic><topic>Ornstein-Uhlenbeck process</topic><topic>Pairs trading</topic><topic>variance gamma process</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leung, Tim</creatorcontrib><creatorcontrib>Lu, Kevin W.</creatorcontrib><collection>Taylor &amp; Francis Journals Open Access</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Applied mathematical finance.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leung, Tim</au><au>Lu, Kevin W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo Simulation for Trading Under a Lévy-Driven Mean-Reverting Framework</atitle><jtitle>Applied mathematical finance.</jtitle><date>2023-07-04</date><risdate>2023</risdate><volume>30</volume><issue>4</issue><spage>207</spage><epage>230</epage><pages>207-230</pages><issn>1350-486X</issn><eissn>1466-4313</eissn><abstract>We present a Monte Carlo approach to pairs trading on mean-reverting spreads modelled by Lévy-driven Ornstein-Uhlenbeck processes. Specifically, we focus on using a variance gamma driving process, an infinite activity pure jump process to allow for more flexible models of the price spread than is available in the classical model. However, this generalization comes at the cost of not having analytic formulas, so we apply Monte Carlo methods to determine optimal trading levels and develop a variance reduction technique using control variates. Within this framework, we numerically examine how the optimal trading strategies are affected by the parameters of the model. In addition, we extend our method to bivariate spreads modelled using a weak variance alpha-gamma driving process, and explore the effect of correlation on these trades.</abstract><cop>Abingdon</cop><pub>Routledge</pub><doi>10.1080/1350486X.2024.2316139</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-486X
ispartof Applied mathematical finance., 2023-07, Vol.30 (4), p.207-230
issn 1350-486X
1466-4313
language eng
recordid cdi_proquest_journals_2932325305
source Business Source Complete (BSC) 商管财经类全文数据库(完整版)
subjects Bivariate analysis
Cost analysis
Lévy process
mean reversion
Monte Carlo simulation
Ornstein-Uhlenbeck process
Pairs trading
variance gamma process
title Monte Carlo Simulation for Trading Under a Lévy-Driven Mean-Reverting Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A15%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20Simulation%20for%20Trading%20Under%20a%20L%C3%A9vy-Driven%20Mean-Reverting%20Framework&rft.jtitle=Applied%20mathematical%20finance.&rft.au=Leung,%20Tim&rft.date=2023-07-04&rft.volume=30&rft.issue=4&rft.spage=207&rft.epage=230&rft.pages=207-230&rft.issn=1350-486X&rft.eissn=1466-4313&rft_id=info:doi/10.1080/1350486X.2024.2316139&rft_dat=%3Cproquest_infor%3E2932325305%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932325305&rft_id=info:pmid/&rfr_iscdi=true