Monte Carlo Simulation for Trading Under a Lévy-Driven Mean-Reverting Framework
We present a Monte Carlo approach to pairs trading on mean-reverting spreads modelled by Lévy-driven Ornstein-Uhlenbeck processes. Specifically, we focus on using a variance gamma driving process, an infinite activity pure jump process to allow for more flexible models of the price spread than is av...
Gespeichert in:
Veröffentlicht in: | Applied mathematical finance. 2023-07, Vol.30 (4), p.207-230 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 230 |
---|---|
container_issue | 4 |
container_start_page | 207 |
container_title | Applied mathematical finance. |
container_volume | 30 |
creator | Leung, Tim Lu, Kevin W. |
description | We present a Monte Carlo approach to pairs trading on mean-reverting spreads modelled by Lévy-driven Ornstein-Uhlenbeck processes. Specifically, we focus on using a variance gamma driving process, an infinite activity pure jump process to allow for more flexible models of the price spread than is available in the classical model. However, this generalization comes at the cost of not having analytic formulas, so we apply Monte Carlo methods to determine optimal trading levels and develop a variance reduction technique using control variates. Within this framework, we numerically examine how the optimal trading strategies are affected by the parameters of the model. In addition, we extend our method to bivariate spreads modelled using a weak variance alpha-gamma driving process, and explore the effect of correlation on these trades. |
doi_str_mv | 10.1080/1350486X.2024.2316139 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2932325305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932325305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3389-1853d4b36b669722c363a9eb28a4a45b44b75de41bed73b436642a6d4c84258a3</originalsourceid><addsrcrecordid>eNp9kNFKwzAUhoMoOKePIAS87kxykrS9U6ZTYUPRDXYX0jaVzjbRtJvskXwOX8yMTrzz6pyL7z8_50PonJIRJQm5pCAIT-RyxAjjIwZUUkgP0IByKSMOFA7DHphoBx2jk7ZdEUJZIvkAPc2c7Qwea187_FI161p3lbO4dB7PvS4q-4oXtjAeazz9_tpsoxtfbYzFM6Nt9Gw2xnc7ZuJ1Yz6dfztFR6WuW3O2n0O0mNzOx_fR9PHuYXw9jXKAJI1oIqDgGchMyjRmLAcJOjUZSzTXXGScZ7EoDKeZKWLIOEjJmZYFzxPORKJhiC76u-_efaxN26mVW3sbKhVLgQETQESgRE_l3rWtN6V691Wj_VZRonby1K88tZOn9vJCDvc5kztbtX-plBAuYiDLgFz1SGWDrEaH5-tCdXpbO196bfMQg_9bfgBay3_J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932325305</pqid></control><display><type>article</type><title>Monte Carlo Simulation for Trading Under a Lévy-Driven Mean-Reverting Framework</title><source>Business Source Complete (BSC) 商管财经类全文数据库(完整版)</source><creator>Leung, Tim ; Lu, Kevin W.</creator><creatorcontrib>Leung, Tim ; Lu, Kevin W.</creatorcontrib><description>We present a Monte Carlo approach to pairs trading on mean-reverting spreads modelled by Lévy-driven Ornstein-Uhlenbeck processes. Specifically, we focus on using a variance gamma driving process, an infinite activity pure jump process to allow for more flexible models of the price spread than is available in the classical model. However, this generalization comes at the cost of not having analytic formulas, so we apply Monte Carlo methods to determine optimal trading levels and develop a variance reduction technique using control variates. Within this framework, we numerically examine how the optimal trading strategies are affected by the parameters of the model. In addition, we extend our method to bivariate spreads modelled using a weak variance alpha-gamma driving process, and explore the effect of correlation on these trades.</description><identifier>ISSN: 1350-486X</identifier><identifier>EISSN: 1466-4313</identifier><identifier>DOI: 10.1080/1350486X.2024.2316139</identifier><language>eng</language><publisher>Abingdon: Routledge</publisher><subject>Bivariate analysis ; Cost analysis ; Lévy process ; mean reversion ; Monte Carlo simulation ; Ornstein-Uhlenbeck process ; Pairs trading ; variance gamma process</subject><ispartof>Applied mathematical finance., 2023-07, Vol.30 (4), p.207-230</ispartof><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024</rights><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3389-1853d4b36b669722c363a9eb28a4a45b44b75de41bed73b436642a6d4c84258a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Leung, Tim</creatorcontrib><creatorcontrib>Lu, Kevin W.</creatorcontrib><title>Monte Carlo Simulation for Trading Under a Lévy-Driven Mean-Reverting Framework</title><title>Applied mathematical finance.</title><description>We present a Monte Carlo approach to pairs trading on mean-reverting spreads modelled by Lévy-driven Ornstein-Uhlenbeck processes. Specifically, we focus on using a variance gamma driving process, an infinite activity pure jump process to allow for more flexible models of the price spread than is available in the classical model. However, this generalization comes at the cost of not having analytic formulas, so we apply Monte Carlo methods to determine optimal trading levels and develop a variance reduction technique using control variates. Within this framework, we numerically examine how the optimal trading strategies are affected by the parameters of the model. In addition, we extend our method to bivariate spreads modelled using a weak variance alpha-gamma driving process, and explore the effect of correlation on these trades.</description><subject>Bivariate analysis</subject><subject>Cost analysis</subject><subject>Lévy process</subject><subject>mean reversion</subject><subject>Monte Carlo simulation</subject><subject>Ornstein-Uhlenbeck process</subject><subject>Pairs trading</subject><subject>variance gamma process</subject><issn>1350-486X</issn><issn>1466-4313</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kNFKwzAUhoMoOKePIAS87kxykrS9U6ZTYUPRDXYX0jaVzjbRtJvskXwOX8yMTrzz6pyL7z8_50PonJIRJQm5pCAIT-RyxAjjIwZUUkgP0IByKSMOFA7DHphoBx2jk7ZdEUJZIvkAPc2c7Qwea187_FI161p3lbO4dB7PvS4q-4oXtjAeazz9_tpsoxtfbYzFM6Nt9Gw2xnc7ZuJ1Yz6dfztFR6WuW3O2n0O0mNzOx_fR9PHuYXw9jXKAJI1oIqDgGchMyjRmLAcJOjUZSzTXXGScZ7EoDKeZKWLIOEjJmZYFzxPORKJhiC76u-_efaxN26mVW3sbKhVLgQETQESgRE_l3rWtN6V691Wj_VZRonby1K88tZOn9vJCDvc5kztbtX-plBAuYiDLgFz1SGWDrEaH5-tCdXpbO196bfMQg_9bfgBay3_J</recordid><startdate>20230704</startdate><enddate>20230704</enddate><creator>Leung, Tim</creator><creator>Lu, Kevin W.</creator><general>Routledge</general><general>Taylor & Francis Ltd</general><scope>0YH</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20230704</creationdate><title>Monte Carlo Simulation for Trading Under a Lévy-Driven Mean-Reverting Framework</title><author>Leung, Tim ; Lu, Kevin W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3389-1853d4b36b669722c363a9eb28a4a45b44b75de41bed73b436642a6d4c84258a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bivariate analysis</topic><topic>Cost analysis</topic><topic>Lévy process</topic><topic>mean reversion</topic><topic>Monte Carlo simulation</topic><topic>Ornstein-Uhlenbeck process</topic><topic>Pairs trading</topic><topic>variance gamma process</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leung, Tim</creatorcontrib><creatorcontrib>Lu, Kevin W.</creatorcontrib><collection>Taylor & Francis Journals Open Access</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Applied mathematical finance.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leung, Tim</au><au>Lu, Kevin W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo Simulation for Trading Under a Lévy-Driven Mean-Reverting Framework</atitle><jtitle>Applied mathematical finance.</jtitle><date>2023-07-04</date><risdate>2023</risdate><volume>30</volume><issue>4</issue><spage>207</spage><epage>230</epage><pages>207-230</pages><issn>1350-486X</issn><eissn>1466-4313</eissn><abstract>We present a Monte Carlo approach to pairs trading on mean-reverting spreads modelled by Lévy-driven Ornstein-Uhlenbeck processes. Specifically, we focus on using a variance gamma driving process, an infinite activity pure jump process to allow for more flexible models of the price spread than is available in the classical model. However, this generalization comes at the cost of not having analytic formulas, so we apply Monte Carlo methods to determine optimal trading levels and develop a variance reduction technique using control variates. Within this framework, we numerically examine how the optimal trading strategies are affected by the parameters of the model. In addition, we extend our method to bivariate spreads modelled using a weak variance alpha-gamma driving process, and explore the effect of correlation on these trades.</abstract><cop>Abingdon</cop><pub>Routledge</pub><doi>10.1080/1350486X.2024.2316139</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-486X |
ispartof | Applied mathematical finance., 2023-07, Vol.30 (4), p.207-230 |
issn | 1350-486X 1466-4313 |
language | eng |
recordid | cdi_proquest_journals_2932325305 |
source | Business Source Complete (BSC) 商管财经类全文数据库(完整版) |
subjects | Bivariate analysis Cost analysis Lévy process mean reversion Monte Carlo simulation Ornstein-Uhlenbeck process Pairs trading variance gamma process |
title | Monte Carlo Simulation for Trading Under a Lévy-Driven Mean-Reverting Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A15%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20Simulation%20for%20Trading%20Under%20a%20L%C3%A9vy-Driven%20Mean-Reverting%20Framework&rft.jtitle=Applied%20mathematical%20finance.&rft.au=Leung,%20Tim&rft.date=2023-07-04&rft.volume=30&rft.issue=4&rft.spage=207&rft.epage=230&rft.pages=207-230&rft.issn=1350-486X&rft.eissn=1466-4313&rft_id=info:doi/10.1080/1350486X.2024.2316139&rft_dat=%3Cproquest_infor%3E2932325305%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932325305&rft_id=info:pmid/&rfr_iscdi=true |