Development of conductive hydrogels: from design mechanisms to frontier applications
Owing to their excellent mechanical flexibility, electrical conductivity, and biocompatibility, conductive hydrogels (CHs) are widely used in the fields of energy and power, and biomedical technology. To arrive at a better understanding of the design methods and development trends of CHs, this paper...
Gespeichert in:
Veröffentlicht in: | Bio-design and manufacturing 2022-10, Vol.5 (4), p.729-756 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 756 |
---|---|
container_issue | 4 |
container_start_page | 729 |
container_title | Bio-design and manufacturing |
container_volume | 5 |
creator | Hong, Yang Lin, Zening Luo, Zirong Jiang, Tao Shang, Jianzhong Yang, Yun |
description | Owing to their excellent mechanical flexibility, electrical conductivity, and biocompatibility, conductive hydrogels (CHs) are widely used in the fields of energy and power, and biomedical technology. To arrive at a better understanding of the design methods and development trends of CHs, this paper summarizes and analyzes related research published in recent years. First, we describe the properties and characteristics of CHs. Using Scopus, the world’s largest abstract and citation database, we conducted a quantitative analysis of the related literature from the past 15 years and summarized development trends in the field of CHs. Second, we describe the types of CH network crosslinking and basic functional design methods and summarize the three-dimensional (3D) structure-forming methods and conductive performance tests of CHs. In addition, we introduce applications of CHs in the fields of energy and power, biomedical technology, and others. Lastly, we discuss several problems in current CH research and introduce some prospects for the future development of CHs.
Graphic abstract |
doi_str_mv | 10.1007/s42242-022-00208-0 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_proquest_journals_2932314311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>swsjyzz202204007</wanfj_id><sourcerecordid>swsjyzz202204007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-ed048a15030c14faa1ecea58a9840d40df18c0069ddcd383ad3208dbb15abe93</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYsoOOa-gE8BX3yp3iTNbH2T-RcGvuw9pMlt19EmNek2tk9vtMLehITcS37nXO5JkmsKdxTg4T5kjGUsBRYvMMhTOEsmTMQ2F4KdxxqKeRrL7DKZhdCUwAtRRGU-SVbPuMPW9R3agbiKaGfNVg_NDsn6YLyrsQ2PpPKuIwZDU1vSoV4r24QukMH9_NihQU9U37eNVkPjbLhKLirVBpz9vdNk9fqyWryny8-3j8XTMtVcsCFFA1muqAAOmmaVUhQ1KpGrIs_AxFPRXAPMC2O04TlXhsftTFlSoUos-DS5HW33ylbK1nLjtt7GgTLsw-ZwPLIYCWRx0YjejGjv3dcWw3BiWcEZpxmnNFJspLR3IXisZO-bTvmDpCB_opZj1DL6yt-oJUQRH0UhwrZGf7L-R_UNyreCUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932314311</pqid></control><display><type>article</type><title>Development of conductive hydrogels: from design mechanisms to frontier applications</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Hong, Yang ; Lin, Zening ; Luo, Zirong ; Jiang, Tao ; Shang, Jianzhong ; Yang, Yun</creator><creatorcontrib>Hong, Yang ; Lin, Zening ; Luo, Zirong ; Jiang, Tao ; Shang, Jianzhong ; Yang, Yun</creatorcontrib><description>Owing to their excellent mechanical flexibility, electrical conductivity, and biocompatibility, conductive hydrogels (CHs) are widely used in the fields of energy and power, and biomedical technology. To arrive at a better understanding of the design methods and development trends of CHs, this paper summarizes and analyzes related research published in recent years. First, we describe the properties and characteristics of CHs. Using Scopus, the world’s largest abstract and citation database, we conducted a quantitative analysis of the related literature from the past 15 years and summarized development trends in the field of CHs. Second, we describe the types of CH network crosslinking and basic functional design methods and summarize the three-dimensional (3D) structure-forming methods and conductive performance tests of CHs. In addition, we introduce applications of CHs in the fields of energy and power, biomedical technology, and others. Lastly, we discuss several problems in current CH research and introduce some prospects for the future development of CHs.
Graphic abstract</description><identifier>ISSN: 2096-5524</identifier><identifier>EISSN: 2522-8552</identifier><identifier>DOI: 10.1007/s42242-022-00208-0</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Bibliometrics ; Biocompatibility ; Biomaterials ; Biomedical Engineering and Bioengineering ; Electrical conductivity ; Engineering ; Hydrogels ; Hydrogen bonds ; Keywords ; Mechanical Engineering ; Mechanical properties ; Methods ; Polymers ; Polyvinyl alcohol ; Review</subject><ispartof>Bio-design and manufacturing, 2022-10, Vol.5 (4), p.729-756</ispartof><rights>Zhejiang University Press 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Zhejiang University Press 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-ed048a15030c14faa1ecea58a9840d40df18c0069ddcd383ad3208dbb15abe93</citedby><cites>FETCH-LOGICAL-c352t-ed048a15030c14faa1ecea58a9840d40df18c0069ddcd383ad3208dbb15abe93</cites><orcidid>0000-0002-5827-0594 ; 0000-0002-8650-4802 ; 0000-0002-8247-7317 ; 0000-0002-9406-5061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/swsjyzz/swsjyzz.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42242-022-00208-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2932314311?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Hong, Yang</creatorcontrib><creatorcontrib>Lin, Zening</creatorcontrib><creatorcontrib>Luo, Zirong</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><creatorcontrib>Shang, Jianzhong</creatorcontrib><creatorcontrib>Yang, Yun</creatorcontrib><title>Development of conductive hydrogels: from design mechanisms to frontier applications</title><title>Bio-design and manufacturing</title><addtitle>Bio-des. Manuf</addtitle><description>Owing to their excellent mechanical flexibility, electrical conductivity, and biocompatibility, conductive hydrogels (CHs) are widely used in the fields of energy and power, and biomedical technology. To arrive at a better understanding of the design methods and development trends of CHs, this paper summarizes and analyzes related research published in recent years. First, we describe the properties and characteristics of CHs. Using Scopus, the world’s largest abstract and citation database, we conducted a quantitative analysis of the related literature from the past 15 years and summarized development trends in the field of CHs. Second, we describe the types of CH network crosslinking and basic functional design methods and summarize the three-dimensional (3D) structure-forming methods and conductive performance tests of CHs. In addition, we introduce applications of CHs in the fields of energy and power, biomedical technology, and others. Lastly, we discuss several problems in current CH research and introduce some prospects for the future development of CHs.
Graphic abstract</description><subject>Bibliometrics</subject><subject>Biocompatibility</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Electrical conductivity</subject><subject>Engineering</subject><subject>Hydrogels</subject><subject>Hydrogen bonds</subject><subject>Keywords</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Polymers</subject><subject>Polyvinyl alcohol</subject><subject>Review</subject><issn>2096-5524</issn><issn>2522-8552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kF9LwzAUxYsoOOa-gE8BX3yp3iTNbH2T-RcGvuw9pMlt19EmNek2tk9vtMLehITcS37nXO5JkmsKdxTg4T5kjGUsBRYvMMhTOEsmTMQ2F4KdxxqKeRrL7DKZhdCUwAtRRGU-SVbPuMPW9R3agbiKaGfNVg_NDsn6YLyrsQ2PpPKuIwZDU1vSoV4r24QukMH9_NihQU9U37eNVkPjbLhKLirVBpz9vdNk9fqyWryny8-3j8XTMtVcsCFFA1muqAAOmmaVUhQ1KpGrIs_AxFPRXAPMC2O04TlXhsftTFlSoUos-DS5HW33ylbK1nLjtt7GgTLsw-ZwPLIYCWRx0YjejGjv3dcWw3BiWcEZpxmnNFJspLR3IXisZO-bTvmDpCB_opZj1DL6yt-oJUQRH0UhwrZGf7L-R_UNyreCUQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Hong, Yang</creator><creator>Lin, Zening</creator><creator>Luo, Zirong</creator><creator>Jiang, Tao</creator><creator>Shang, Jianzhong</creator><creator>Yang, Yun</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><general>College of Intelligence Science and Technology,National University of Defense Technology,Changsha 410073,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><orcidid>https://orcid.org/0000-0002-5827-0594</orcidid><orcidid>https://orcid.org/0000-0002-8650-4802</orcidid><orcidid>https://orcid.org/0000-0002-8247-7317</orcidid><orcidid>https://orcid.org/0000-0002-9406-5061</orcidid></search><sort><creationdate>20221001</creationdate><title>Development of conductive hydrogels: from design mechanisms to frontier applications</title><author>Hong, Yang ; Lin, Zening ; Luo, Zirong ; Jiang, Tao ; Shang, Jianzhong ; Yang, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-ed048a15030c14faa1ecea58a9840d40df18c0069ddcd383ad3208dbb15abe93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bibliometrics</topic><topic>Biocompatibility</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Electrical conductivity</topic><topic>Engineering</topic><topic>Hydrogels</topic><topic>Hydrogen bonds</topic><topic>Keywords</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Polymers</topic><topic>Polyvinyl alcohol</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Yang</creatorcontrib><creatorcontrib>Lin, Zening</creatorcontrib><creatorcontrib>Luo, Zirong</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><creatorcontrib>Shang, Jianzhong</creatorcontrib><creatorcontrib>Yang, Yun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Bio-design and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Yang</au><au>Lin, Zening</au><au>Luo, Zirong</au><au>Jiang, Tao</au><au>Shang, Jianzhong</au><au>Yang, Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of conductive hydrogels: from design mechanisms to frontier applications</atitle><jtitle>Bio-design and manufacturing</jtitle><stitle>Bio-des. Manuf</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>5</volume><issue>4</issue><spage>729</spage><epage>756</epage><pages>729-756</pages><issn>2096-5524</issn><eissn>2522-8552</eissn><abstract>Owing to their excellent mechanical flexibility, electrical conductivity, and biocompatibility, conductive hydrogels (CHs) are widely used in the fields of energy and power, and biomedical technology. To arrive at a better understanding of the design methods and development trends of CHs, this paper summarizes and analyzes related research published in recent years. First, we describe the properties and characteristics of CHs. Using Scopus, the world’s largest abstract and citation database, we conducted a quantitative analysis of the related literature from the past 15 years and summarized development trends in the field of CHs. Second, we describe the types of CH network crosslinking and basic functional design methods and summarize the three-dimensional (3D) structure-forming methods and conductive performance tests of CHs. In addition, we introduce applications of CHs in the fields of energy and power, biomedical technology, and others. Lastly, we discuss several problems in current CH research and introduce some prospects for the future development of CHs.
Graphic abstract</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42242-022-00208-0</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-5827-0594</orcidid><orcidid>https://orcid.org/0000-0002-8650-4802</orcidid><orcidid>https://orcid.org/0000-0002-8247-7317</orcidid><orcidid>https://orcid.org/0000-0002-9406-5061</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2096-5524 |
ispartof | Bio-design and manufacturing, 2022-10, Vol.5 (4), p.729-756 |
issn | 2096-5524 2522-8552 |
language | eng |
recordid | cdi_proquest_journals_2932314311 |
source | SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Bibliometrics Biocompatibility Biomaterials Biomedical Engineering and Bioengineering Electrical conductivity Engineering Hydrogels Hydrogen bonds Keywords Mechanical Engineering Mechanical properties Methods Polymers Polyvinyl alcohol Review |
title | Development of conductive hydrogels: from design mechanisms to frontier applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A25%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20conductive%20hydrogels:%20from%20design%20mechanisms%20to%20frontier%20applications&rft.jtitle=Bio-design%20and%20manufacturing&rft.au=Hong,%20Yang&rft.date=2022-10-01&rft.volume=5&rft.issue=4&rft.spage=729&rft.epage=756&rft.pages=729-756&rft.issn=2096-5524&rft.eissn=2522-8552&rft_id=info:doi/10.1007/s42242-022-00208-0&rft_dat=%3Cwanfang_jour_proqu%3Eswsjyzz202204007%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932314311&rft_id=info:pmid/&rft_wanfj_id=swsjyzz202204007&rfr_iscdi=true |