Design and static testing of a compact distributed-compliance gripper based on flexure motion

There are precision issues with traditional rigid-body grippers due to their nature in presence of joints’ backlash and friction. This paper presents a macroscale compliant gripper to eliminate these issues for the applications in handing delicate/brittle materials such as powder granular or manipul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of Civil and Mechanical Engineering 2016-09, Vol.16 (4), p.708-716
Hauptverfasser: Hao, Guangbo, Hand, Ronan Brendan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 716
container_issue 4
container_start_page 708
container_title Archives of Civil and Mechanical Engineering
container_volume 16
creator Hao, Guangbo
Hand, Ronan Brendan
description There are precision issues with traditional rigid-body grippers due to their nature in presence of joints’ backlash and friction. This paper presents a macroscale compliant gripper to eliminate these issues for the applications in handing delicate/brittle materials such as powder granular or manipulating sub-millimetre objects such as optical fibre and micro-lens. The compliant gripper is obtained from a 2-PRRP (P: prismatic; R: revolute) kinematic mechanism, and uses distributed-compliance joints for avoiding stress-concentration and enabling large range of motion. A very compact design is achieved by using a position space principle. The compliant gripper is modelled, fabricated, followed by comprehensive testing for characterising relationships between the input displacement/force and output displacement and between the input displacement and displacement amplification ratio, and for analysing hysteresis during loading and unloading. The experimental results are compared with finite element analysis (FEA) model and linear analytical model. The testing results have suggested good performance characteristics of this compliant gripper such as a nearly linear relationship between the input and output, a nearly constant amplification ratio for closing the jaw, and negligible hysteresis error.
doi_str_mv 10.1016/j.acme.2016.04.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932274053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932274053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f398316cce2c3c47c80d47ee11b4598fcb4e4525582b651b8ed8e2e21770c8d03</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOIzzB1wFXLfm2aZLGZ8w4EaXEtL0tqRM05qkoP_elhHcubqXyznnHj6ErinJKaHFbZ8bO0DOlj0nIieUnqENI4pnnFN1jja0ECKrikJeol2MPSGEkpLRQm7Qxz1E13lsfINjMslZnCAm5zs8tthgOw6TsQk3Lqbg6jlBk623ozPeAu6CmyYIuDYRGjx63B7haw6AhzG50V-hi9YcI-x-5xa9Pz687Z-zw-vTy_7ukFlOq5S1vFKcFtYCs9yK0irSiBKA0lrISrW2FiAkk1KxupC0VtAoYMBoWRKrGsK36OaUO4Xxc176636cg19ealZxxkpBJF9U7KSyYYwxQKun4AYTvjUleiWpe72S1CtJTYReSC4mfjLFRew7CH_R_7h-AH2WeNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932274053</pqid></control><display><type>article</type><title>Design and static testing of a compact distributed-compliance gripper based on flexure motion</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Hao, Guangbo ; Hand, Ronan Brendan</creator><creatorcontrib>Hao, Guangbo ; Hand, Ronan Brendan</creatorcontrib><description>There are precision issues with traditional rigid-body grippers due to their nature in presence of joints’ backlash and friction. This paper presents a macroscale compliant gripper to eliminate these issues for the applications in handing delicate/brittle materials such as powder granular or manipulating sub-millimetre objects such as optical fibre and micro-lens. The compliant gripper is obtained from a 2-PRRP (P: prismatic; R: revolute) kinematic mechanism, and uses distributed-compliance joints for avoiding stress-concentration and enabling large range of motion. A very compact design is achieved by using a position space principle. The compliant gripper is modelled, fabricated, followed by comprehensive testing for characterising relationships between the input displacement/force and output displacement and between the input displacement and displacement amplification ratio, and for analysing hysteresis during loading and unloading. The experimental results are compared with finite element analysis (FEA) model and linear analytical model. The testing results have suggested good performance characteristics of this compliant gripper such as a nearly linear relationship between the input and output, a nearly constant amplification ratio for closing the jaw, and negligible hysteresis error.</description><identifier>ISSN: 1644-9665</identifier><identifier>EISSN: 2083-3318</identifier><identifier>DOI: 10.1016/j.acme.2016.04.011</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Amplification ; Brittle materials ; Civil Engineering ; Displacement ; Engineering ; Finite element method ; Grippers ; Hysteresis ; Kinematics ; Mathematical models ; Mechanical Engineering ; Microlenses ; Model testing ; Optical fibers ; Original Research Article ; Stress concentration ; Structural Materials</subject><ispartof>Archives of Civil and Mechanical Engineering, 2016-09, Vol.16 (4), p.708-716</ispartof><rights>University of Wroclaw Science and Technology 2016</rights><rights>Copyright Springer Nature B.V. Dec 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f398316cce2c3c47c80d47ee11b4598fcb4e4525582b651b8ed8e2e21770c8d03</citedby><cites>FETCH-LOGICAL-c319t-f398316cce2c3c47c80d47ee11b4598fcb4e4525582b651b8ed8e2e21770c8d03</cites><orcidid>0000-0002-5930-5453</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1016/j.acme.2016.04.011$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2932274053?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Hao, Guangbo</creatorcontrib><creatorcontrib>Hand, Ronan Brendan</creatorcontrib><title>Design and static testing of a compact distributed-compliance gripper based on flexure motion</title><title>Archives of Civil and Mechanical Engineering</title><addtitle>Archiv.Civ.Mech.Eng</addtitle><description>There are precision issues with traditional rigid-body grippers due to their nature in presence of joints’ backlash and friction. This paper presents a macroscale compliant gripper to eliminate these issues for the applications in handing delicate/brittle materials such as powder granular or manipulating sub-millimetre objects such as optical fibre and micro-lens. The compliant gripper is obtained from a 2-PRRP (P: prismatic; R: revolute) kinematic mechanism, and uses distributed-compliance joints for avoiding stress-concentration and enabling large range of motion. A very compact design is achieved by using a position space principle. The compliant gripper is modelled, fabricated, followed by comprehensive testing for characterising relationships between the input displacement/force and output displacement and between the input displacement and displacement amplification ratio, and for analysing hysteresis during loading and unloading. The experimental results are compared with finite element analysis (FEA) model and linear analytical model. The testing results have suggested good performance characteristics of this compliant gripper such as a nearly linear relationship between the input and output, a nearly constant amplification ratio for closing the jaw, and negligible hysteresis error.</description><subject>Amplification</subject><subject>Brittle materials</subject><subject>Civil Engineering</subject><subject>Displacement</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Grippers</subject><subject>Hysteresis</subject><subject>Kinematics</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Microlenses</subject><subject>Model testing</subject><subject>Optical fibers</subject><subject>Original Research Article</subject><subject>Stress concentration</subject><subject>Structural Materials</subject><issn>1644-9665</issn><issn>2083-3318</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLxDAUhYMoOIzzB1wFXLfm2aZLGZ8w4EaXEtL0tqRM05qkoP_elhHcubqXyznnHj6ErinJKaHFbZ8bO0DOlj0nIieUnqENI4pnnFN1jja0ECKrikJeol2MPSGEkpLRQm7Qxz1E13lsfINjMslZnCAm5zs8tthgOw6TsQk3Lqbg6jlBk623ozPeAu6CmyYIuDYRGjx63B7haw6AhzG50V-hi9YcI-x-5xa9Pz687Z-zw-vTy_7ukFlOq5S1vFKcFtYCs9yK0irSiBKA0lrISrW2FiAkk1KxupC0VtAoYMBoWRKrGsK36OaUO4Xxc176636cg19ealZxxkpBJF9U7KSyYYwxQKun4AYTvjUleiWpe72S1CtJTYReSC4mfjLFRew7CH_R_7h-AH2WeNo</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Hao, Guangbo</creator><creator>Hand, Ronan Brendan</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-5930-5453</orcidid></search><sort><creationdate>20160901</creationdate><title>Design and static testing of a compact distributed-compliance gripper based on flexure motion</title><author>Hao, Guangbo ; Hand, Ronan Brendan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f398316cce2c3c47c80d47ee11b4598fcb4e4525582b651b8ed8e2e21770c8d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amplification</topic><topic>Brittle materials</topic><topic>Civil Engineering</topic><topic>Displacement</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Grippers</topic><topic>Hysteresis</topic><topic>Kinematics</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Microlenses</topic><topic>Model testing</topic><topic>Optical fibers</topic><topic>Original Research Article</topic><topic>Stress concentration</topic><topic>Structural Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Guangbo</creatorcontrib><creatorcontrib>Hand, Ronan Brendan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Archives of Civil and Mechanical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Guangbo</au><au>Hand, Ronan Brendan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and static testing of a compact distributed-compliance gripper based on flexure motion</atitle><jtitle>Archives of Civil and Mechanical Engineering</jtitle><stitle>Archiv.Civ.Mech.Eng</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>16</volume><issue>4</issue><spage>708</spage><epage>716</epage><pages>708-716</pages><issn>1644-9665</issn><eissn>2083-3318</eissn><abstract>There are precision issues with traditional rigid-body grippers due to their nature in presence of joints’ backlash and friction. This paper presents a macroscale compliant gripper to eliminate these issues for the applications in handing delicate/brittle materials such as powder granular or manipulating sub-millimetre objects such as optical fibre and micro-lens. The compliant gripper is obtained from a 2-PRRP (P: prismatic; R: revolute) kinematic mechanism, and uses distributed-compliance joints for avoiding stress-concentration and enabling large range of motion. A very compact design is achieved by using a position space principle. The compliant gripper is modelled, fabricated, followed by comprehensive testing for characterising relationships between the input displacement/force and output displacement and between the input displacement and displacement amplification ratio, and for analysing hysteresis during loading and unloading. The experimental results are compared with finite element analysis (FEA) model and linear analytical model. The testing results have suggested good performance characteristics of this compliant gripper such as a nearly linear relationship between the input and output, a nearly constant amplification ratio for closing the jaw, and negligible hysteresis error.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1016/j.acme.2016.04.011</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5930-5453</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1644-9665
ispartof Archives of Civil and Mechanical Engineering, 2016-09, Vol.16 (4), p.708-716
issn 1644-9665
2083-3318
language eng
recordid cdi_proquest_journals_2932274053
source Springer Nature - Complete Springer Journals; ProQuest Central
subjects Amplification
Brittle materials
Civil Engineering
Displacement
Engineering
Finite element method
Grippers
Hysteresis
Kinematics
Mathematical models
Mechanical Engineering
Microlenses
Model testing
Optical fibers
Original Research Article
Stress concentration
Structural Materials
title Design and static testing of a compact distributed-compliance gripper based on flexure motion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A07%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20static%20testing%20of%20a%20compact%20distributed-compliance%20gripper%20based%20on%20flexure%20motion&rft.jtitle=Archives%20of%20Civil%20and%20Mechanical%20Engineering&rft.au=Hao,%20Guangbo&rft.date=2016-09-01&rft.volume=16&rft.issue=4&rft.spage=708&rft.epage=716&rft.pages=708-716&rft.issn=1644-9665&rft.eissn=2083-3318&rft_id=info:doi/10.1016/j.acme.2016.04.011&rft_dat=%3Cproquest_cross%3E2932274053%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932274053&rft_id=info:pmid/&rfr_iscdi=true