Design and static testing of a compact distributed-compliance gripper based on flexure motion
There are precision issues with traditional rigid-body grippers due to their nature in presence of joints’ backlash and friction. This paper presents a macroscale compliant gripper to eliminate these issues for the applications in handing delicate/brittle materials such as powder granular or manipul...
Gespeichert in:
Veröffentlicht in: | Archives of Civil and Mechanical Engineering 2016-09, Vol.16 (4), p.708-716 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 716 |
---|---|
container_issue | 4 |
container_start_page | 708 |
container_title | Archives of Civil and Mechanical Engineering |
container_volume | 16 |
creator | Hao, Guangbo Hand, Ronan Brendan |
description | There are precision issues with traditional rigid-body grippers due to their nature in presence of joints’ backlash and friction. This paper presents a macroscale compliant gripper to eliminate these issues for the applications in handing delicate/brittle materials such as powder granular or manipulating sub-millimetre objects such as optical fibre and micro-lens. The compliant gripper is obtained from a 2-PRRP (P: prismatic; R: revolute) kinematic mechanism, and uses distributed-compliance joints for avoiding stress-concentration and enabling large range of motion. A very compact design is achieved by using a position space principle. The compliant gripper is modelled, fabricated, followed by comprehensive testing for characterising relationships between the input displacement/force and output displacement and between the input displacement and displacement amplification ratio, and for analysing hysteresis during loading and unloading. The experimental results are compared with finite element analysis (FEA) model and linear analytical model. The testing results have suggested good performance characteristics of this compliant gripper such as a nearly linear relationship between the input and output, a nearly constant amplification ratio for closing the jaw, and negligible hysteresis error. |
doi_str_mv | 10.1016/j.acme.2016.04.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932274053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932274053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f398316cce2c3c47c80d47ee11b4598fcb4e4525582b651b8ed8e2e21770c8d03</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOIzzB1wFXLfm2aZLGZ8w4EaXEtL0tqRM05qkoP_elhHcubqXyznnHj6ErinJKaHFbZ8bO0DOlj0nIieUnqENI4pnnFN1jja0ECKrikJeol2MPSGEkpLRQm7Qxz1E13lsfINjMslZnCAm5zs8tthgOw6TsQk3Lqbg6jlBk623ozPeAu6CmyYIuDYRGjx63B7haw6AhzG50V-hi9YcI-x-5xa9Pz687Z-zw-vTy_7ukFlOq5S1vFKcFtYCs9yK0irSiBKA0lrISrW2FiAkk1KxupC0VtAoYMBoWRKrGsK36OaUO4Xxc176636cg19ealZxxkpBJF9U7KSyYYwxQKun4AYTvjUleiWpe72S1CtJTYReSC4mfjLFRew7CH_R_7h-AH2WeNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932274053</pqid></control><display><type>article</type><title>Design and static testing of a compact distributed-compliance gripper based on flexure motion</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Hao, Guangbo ; Hand, Ronan Brendan</creator><creatorcontrib>Hao, Guangbo ; Hand, Ronan Brendan</creatorcontrib><description>There are precision issues with traditional rigid-body grippers due to their nature in presence of joints’ backlash and friction. This paper presents a macroscale compliant gripper to eliminate these issues for the applications in handing delicate/brittle materials such as powder granular or manipulating sub-millimetre objects such as optical fibre and micro-lens. The compliant gripper is obtained from a 2-PRRP (P: prismatic; R: revolute) kinematic mechanism, and uses distributed-compliance joints for avoiding stress-concentration and enabling large range of motion. A very compact design is achieved by using a position space principle. The compliant gripper is modelled, fabricated, followed by comprehensive testing for characterising relationships between the input displacement/force and output displacement and between the input displacement and displacement amplification ratio, and for analysing hysteresis during loading and unloading. The experimental results are compared with finite element analysis (FEA) model and linear analytical model. The testing results have suggested good performance characteristics of this compliant gripper such as a nearly linear relationship between the input and output, a nearly constant amplification ratio for closing the jaw, and negligible hysteresis error.</description><identifier>ISSN: 1644-9665</identifier><identifier>EISSN: 2083-3318</identifier><identifier>DOI: 10.1016/j.acme.2016.04.011</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Amplification ; Brittle materials ; Civil Engineering ; Displacement ; Engineering ; Finite element method ; Grippers ; Hysteresis ; Kinematics ; Mathematical models ; Mechanical Engineering ; Microlenses ; Model testing ; Optical fibers ; Original Research Article ; Stress concentration ; Structural Materials</subject><ispartof>Archives of Civil and Mechanical Engineering, 2016-09, Vol.16 (4), p.708-716</ispartof><rights>University of Wroclaw Science and Technology 2016</rights><rights>Copyright Springer Nature B.V. Dec 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f398316cce2c3c47c80d47ee11b4598fcb4e4525582b651b8ed8e2e21770c8d03</citedby><cites>FETCH-LOGICAL-c319t-f398316cce2c3c47c80d47ee11b4598fcb4e4525582b651b8ed8e2e21770c8d03</cites><orcidid>0000-0002-5930-5453</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1016/j.acme.2016.04.011$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2932274053?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Hao, Guangbo</creatorcontrib><creatorcontrib>Hand, Ronan Brendan</creatorcontrib><title>Design and static testing of a compact distributed-compliance gripper based on flexure motion</title><title>Archives of Civil and Mechanical Engineering</title><addtitle>Archiv.Civ.Mech.Eng</addtitle><description>There are precision issues with traditional rigid-body grippers due to their nature in presence of joints’ backlash and friction. This paper presents a macroscale compliant gripper to eliminate these issues for the applications in handing delicate/brittle materials such as powder granular or manipulating sub-millimetre objects such as optical fibre and micro-lens. The compliant gripper is obtained from a 2-PRRP (P: prismatic; R: revolute) kinematic mechanism, and uses distributed-compliance joints for avoiding stress-concentration and enabling large range of motion. A very compact design is achieved by using a position space principle. The compliant gripper is modelled, fabricated, followed by comprehensive testing for characterising relationships between the input displacement/force and output displacement and between the input displacement and displacement amplification ratio, and for analysing hysteresis during loading and unloading. The experimental results are compared with finite element analysis (FEA) model and linear analytical model. The testing results have suggested good performance characteristics of this compliant gripper such as a nearly linear relationship between the input and output, a nearly constant amplification ratio for closing the jaw, and negligible hysteresis error.</description><subject>Amplification</subject><subject>Brittle materials</subject><subject>Civil Engineering</subject><subject>Displacement</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Grippers</subject><subject>Hysteresis</subject><subject>Kinematics</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Microlenses</subject><subject>Model testing</subject><subject>Optical fibers</subject><subject>Original Research Article</subject><subject>Stress concentration</subject><subject>Structural Materials</subject><issn>1644-9665</issn><issn>2083-3318</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLxDAUhYMoOIzzB1wFXLfm2aZLGZ8w4EaXEtL0tqRM05qkoP_elhHcubqXyznnHj6ErinJKaHFbZ8bO0DOlj0nIieUnqENI4pnnFN1jja0ECKrikJeol2MPSGEkpLRQm7Qxz1E13lsfINjMslZnCAm5zs8tthgOw6TsQk3Lqbg6jlBk623ozPeAu6CmyYIuDYRGjx63B7haw6AhzG50V-hi9YcI-x-5xa9Pz687Z-zw-vTy_7ukFlOq5S1vFKcFtYCs9yK0irSiBKA0lrISrW2FiAkk1KxupC0VtAoYMBoWRKrGsK36OaUO4Xxc176636cg19ealZxxkpBJF9U7KSyYYwxQKun4AYTvjUleiWpe72S1CtJTYReSC4mfjLFRew7CH_R_7h-AH2WeNo</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Hao, Guangbo</creator><creator>Hand, Ronan Brendan</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-5930-5453</orcidid></search><sort><creationdate>20160901</creationdate><title>Design and static testing of a compact distributed-compliance gripper based on flexure motion</title><author>Hao, Guangbo ; Hand, Ronan Brendan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f398316cce2c3c47c80d47ee11b4598fcb4e4525582b651b8ed8e2e21770c8d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amplification</topic><topic>Brittle materials</topic><topic>Civil Engineering</topic><topic>Displacement</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Grippers</topic><topic>Hysteresis</topic><topic>Kinematics</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Microlenses</topic><topic>Model testing</topic><topic>Optical fibers</topic><topic>Original Research Article</topic><topic>Stress concentration</topic><topic>Structural Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Guangbo</creatorcontrib><creatorcontrib>Hand, Ronan Brendan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Archives of Civil and Mechanical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Guangbo</au><au>Hand, Ronan Brendan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and static testing of a compact distributed-compliance gripper based on flexure motion</atitle><jtitle>Archives of Civil and Mechanical Engineering</jtitle><stitle>Archiv.Civ.Mech.Eng</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>16</volume><issue>4</issue><spage>708</spage><epage>716</epage><pages>708-716</pages><issn>1644-9665</issn><eissn>2083-3318</eissn><abstract>There are precision issues with traditional rigid-body grippers due to their nature in presence of joints’ backlash and friction. This paper presents a macroscale compliant gripper to eliminate these issues for the applications in handing delicate/brittle materials such as powder granular or manipulating sub-millimetre objects such as optical fibre and micro-lens. The compliant gripper is obtained from a 2-PRRP (P: prismatic; R: revolute) kinematic mechanism, and uses distributed-compliance joints for avoiding stress-concentration and enabling large range of motion. A very compact design is achieved by using a position space principle. The compliant gripper is modelled, fabricated, followed by comprehensive testing for characterising relationships between the input displacement/force and output displacement and between the input displacement and displacement amplification ratio, and for analysing hysteresis during loading and unloading. The experimental results are compared with finite element analysis (FEA) model and linear analytical model. The testing results have suggested good performance characteristics of this compliant gripper such as a nearly linear relationship between the input and output, a nearly constant amplification ratio for closing the jaw, and negligible hysteresis error.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1016/j.acme.2016.04.011</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5930-5453</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1644-9665 |
ispartof | Archives of Civil and Mechanical Engineering, 2016-09, Vol.16 (4), p.708-716 |
issn | 1644-9665 2083-3318 |
language | eng |
recordid | cdi_proquest_journals_2932274053 |
source | Springer Nature - Complete Springer Journals; ProQuest Central |
subjects | Amplification Brittle materials Civil Engineering Displacement Engineering Finite element method Grippers Hysteresis Kinematics Mathematical models Mechanical Engineering Microlenses Model testing Optical fibers Original Research Article Stress concentration Structural Materials |
title | Design and static testing of a compact distributed-compliance gripper based on flexure motion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A07%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20static%20testing%20of%20a%20compact%20distributed-compliance%20gripper%20based%20on%20flexure%20motion&rft.jtitle=Archives%20of%20Civil%20and%20Mechanical%20Engineering&rft.au=Hao,%20Guangbo&rft.date=2016-09-01&rft.volume=16&rft.issue=4&rft.spage=708&rft.epage=716&rft.pages=708-716&rft.issn=1644-9665&rft.eissn=2083-3318&rft_id=info:doi/10.1016/j.acme.2016.04.011&rft_dat=%3Cproquest_cross%3E2932274053%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932274053&rft_id=info:pmid/&rfr_iscdi=true |