Simultaneously Improving Mechanical Properties and Stress Corrosion Cracking Resistance of High-Strength Low-Alloy Steel via Finish Rolling within Non-recrystallization Temperature
The effect of hot rolling process on microstructure evolution, mechanical properties and stress corrosion cracking (SCC) resistance of high-strength low-alloy (HSLA) steels was investigated by varying the finish rolling temperature (FRT) and total rolling reduction. The results revealed granular bai...
Gespeichert in:
Veröffentlicht in: | Acta metallurgica sinica : English letters 2021-04, Vol.34 (4), p.565-578 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 578 |
---|---|
container_issue | 4 |
container_start_page | 565 |
container_title | Acta metallurgica sinica : English letters |
container_volume | 34 |
creator | Ma, Hongchi Zhao, Baijie Fan, Yi Xiao, Kui Zhao, Jinbin Cheng, Xuequn Li, Xiaogang |
description | The effect of hot rolling process on microstructure evolution, mechanical properties and stress corrosion cracking (SCC) resistance of high-strength low-alloy (HSLA) steels was investigated by varying the finish rolling temperature (FRT) and total rolling reduction. The results revealed granular bainite with large equiaxed grains was obtained by a total rolling reduction of 60% with the FRT of 950 °C (within recrystallization temperature
T
r
). The larger grain size and much less grain boundaries should account for the relatively lower strength and SCC resistance. A larger rolling reduction of 80% under the same FRT resulted in the formation of massive martensite–austenite (M/A) constituents and resultant low ductility and SCC resistance. In contrast, a good combination of strength, ductility and SCC resistance was obtained via 80% rolling reduction with the FRT of 860 °C (within non-recrystallization temperature
T
nr
), probably because of the fine grain size and M/A constituents, as well as a high density of grain boundary network. |
doi_str_mv | 10.1007/s40195-020-01161-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932255056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932255056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-9dadfbea380109a09f7705e94a6e2329bb3f7e5636f8d427f5820c3df65381863</originalsourceid><addsrcrecordid>eNp9kV1vFCEUhonRxLX6B7wi8RrLx8AMl83G2iarNW29JuzMYYfKwgozbdbf5Q-UcZt45xUhPM97yHkRes_oR0Zpe14ayrQklFNCGVOMqBdoxZluCOOdfolWlVKkZZq9Rm9Keag33sh2hX7f-f0cJhshzSUc8fX-kNOjjzv8BfrRRt_bgL_ldIA8eSjYxgHfTRlKweuUcyo-RbzOtv-xOLdQfKlhPeDk8JXfjWSB424a8SY9kYsQ0rH6AAE_eosvffRlxLcphEV_8tPoI_6aIsnQ52ONqg-_7LQMuYd9_YSd5gxv0StnQ4F3z-cZ-n756X59RTY3n6_XFxvSCyUmogc7uC1Y0VFGtaXatS2VoBurgAuut1vhWpBKKNcNDW-d7DjtxeCUFB3rlDhDH065dSc_ZyiTeUhzjnWk4VpwLiWVC8VPVF_XUTI4c8h-b_PRMGqWdsypHVPbMX_bMYskTlKpcNxB_hf9H-sPntWW8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932255056</pqid></control><display><type>article</type><title>Simultaneously Improving Mechanical Properties and Stress Corrosion Cracking Resistance of High-Strength Low-Alloy Steel via Finish Rolling within Non-recrystallization Temperature</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Ma, Hongchi ; Zhao, Baijie ; Fan, Yi ; Xiao, Kui ; Zhao, Jinbin ; Cheng, Xuequn ; Li, Xiaogang</creator><creatorcontrib>Ma, Hongchi ; Zhao, Baijie ; Fan, Yi ; Xiao, Kui ; Zhao, Jinbin ; Cheng, Xuequn ; Li, Xiaogang</creatorcontrib><description>The effect of hot rolling process on microstructure evolution, mechanical properties and stress corrosion cracking (SCC) resistance of high-strength low-alloy (HSLA) steels was investigated by varying the finish rolling temperature (FRT) and total rolling reduction. The results revealed granular bainite with large equiaxed grains was obtained by a total rolling reduction of 60% with the FRT of 950 °C (within recrystallization temperature
T
r
). The larger grain size and much less grain boundaries should account for the relatively lower strength and SCC resistance. A larger rolling reduction of 80% under the same FRT resulted in the formation of massive martensite–austenite (M/A) constituents and resultant low ductility and SCC resistance. In contrast, a good combination of strength, ductility and SCC resistance was obtained via 80% rolling reduction with the FRT of 860 °C (within non-recrystallization temperature
T
nr
), probably because of the fine grain size and M/A constituents, as well as a high density of grain boundary network.</description><identifier>ISSN: 1006-7191</identifier><identifier>EISSN: 2194-1289</identifier><identifier>DOI: 10.1007/s40195-020-01161-6</identifier><language>eng</language><publisher>Beijing: The Chinese Society for Metals</publisher><subject>Bainite ; Carbon ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Constituents ; Corrosion and Coatings ; Corrosion resistance ; Corrosion resistant steels ; Ductility ; Ethanol ; Finish rolling ; Fractures ; Grain boundaries ; Grain size ; High strength low alloy steels ; Hot rolling ; Martensite ; Materials Science ; Mechanical properties ; Metallic Materials ; Microstructure ; Nanotechnology ; Organometallic Chemistry ; Recrystallization ; Reduction ; Spectroscopy/Spectrometry ; Steel ; Stress corrosion cracking ; Tribology</subject><ispartof>Acta metallurgica sinica : English letters, 2021-04, Vol.34 (4), p.565-578</ispartof><rights>The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-9dadfbea380109a09f7705e94a6e2329bb3f7e5636f8d427f5820c3df65381863</citedby><cites>FETCH-LOGICAL-c363t-9dadfbea380109a09f7705e94a6e2329bb3f7e5636f8d427f5820c3df65381863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40195-020-01161-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2932255056?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Ma, Hongchi</creatorcontrib><creatorcontrib>Zhao, Baijie</creatorcontrib><creatorcontrib>Fan, Yi</creatorcontrib><creatorcontrib>Xiao, Kui</creatorcontrib><creatorcontrib>Zhao, Jinbin</creatorcontrib><creatorcontrib>Cheng, Xuequn</creatorcontrib><creatorcontrib>Li, Xiaogang</creatorcontrib><title>Simultaneously Improving Mechanical Properties and Stress Corrosion Cracking Resistance of High-Strength Low-Alloy Steel via Finish Rolling within Non-recrystallization Temperature</title><title>Acta metallurgica sinica : English letters</title><addtitle>Acta Metall. Sin. (Engl. Lett.)</addtitle><description>The effect of hot rolling process on microstructure evolution, mechanical properties and stress corrosion cracking (SCC) resistance of high-strength low-alloy (HSLA) steels was investigated by varying the finish rolling temperature (FRT) and total rolling reduction. The results revealed granular bainite with large equiaxed grains was obtained by a total rolling reduction of 60% with the FRT of 950 °C (within recrystallization temperature
T
r
). The larger grain size and much less grain boundaries should account for the relatively lower strength and SCC resistance. A larger rolling reduction of 80% under the same FRT resulted in the formation of massive martensite–austenite (M/A) constituents and resultant low ductility and SCC resistance. In contrast, a good combination of strength, ductility and SCC resistance was obtained via 80% rolling reduction with the FRT of 860 °C (within non-recrystallization temperature
T
nr
), probably because of the fine grain size and M/A constituents, as well as a high density of grain boundary network.</description><subject>Bainite</subject><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Constituents</subject><subject>Corrosion and Coatings</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant steels</subject><subject>Ductility</subject><subject>Ethanol</subject><subject>Finish rolling</subject><subject>Fractures</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>High strength low alloy steels</subject><subject>Hot rolling</subject><subject>Martensite</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Organometallic Chemistry</subject><subject>Recrystallization</subject><subject>Reduction</subject><subject>Spectroscopy/Spectrometry</subject><subject>Steel</subject><subject>Stress corrosion cracking</subject><subject>Tribology</subject><issn>1006-7191</issn><issn>2194-1289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kV1vFCEUhonRxLX6B7wi8RrLx8AMl83G2iarNW29JuzMYYfKwgozbdbf5Q-UcZt45xUhPM97yHkRes_oR0Zpe14ayrQklFNCGVOMqBdoxZluCOOdfolWlVKkZZq9Rm9Keag33sh2hX7f-f0cJhshzSUc8fX-kNOjjzv8BfrRRt_bgL_ldIA8eSjYxgHfTRlKweuUcyo-RbzOtv-xOLdQfKlhPeDk8JXfjWSB424a8SY9kYsQ0rH6AAE_eosvffRlxLcphEV_8tPoI_6aIsnQ52ONqg-_7LQMuYd9_YSd5gxv0StnQ4F3z-cZ-n756X59RTY3n6_XFxvSCyUmogc7uC1Y0VFGtaXatS2VoBurgAuut1vhWpBKKNcNDW-d7DjtxeCUFB3rlDhDH065dSc_ZyiTeUhzjnWk4VpwLiWVC8VPVF_XUTI4c8h-b_PRMGqWdsypHVPbMX_bMYskTlKpcNxB_hf9H-sPntWW8w</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Ma, Hongchi</creator><creator>Zhao, Baijie</creator><creator>Fan, Yi</creator><creator>Xiao, Kui</creator><creator>Zhao, Jinbin</creator><creator>Cheng, Xuequn</creator><creator>Li, Xiaogang</creator><general>The Chinese Society for Metals</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20210401</creationdate><title>Simultaneously Improving Mechanical Properties and Stress Corrosion Cracking Resistance of High-Strength Low-Alloy Steel via Finish Rolling within Non-recrystallization Temperature</title><author>Ma, Hongchi ; Zhao, Baijie ; Fan, Yi ; Xiao, Kui ; Zhao, Jinbin ; Cheng, Xuequn ; Li, Xiaogang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-9dadfbea380109a09f7705e94a6e2329bb3f7e5636f8d427f5820c3df65381863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bainite</topic><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Constituents</topic><topic>Corrosion and Coatings</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant steels</topic><topic>Ductility</topic><topic>Ethanol</topic><topic>Finish rolling</topic><topic>Fractures</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>High strength low alloy steels</topic><topic>Hot rolling</topic><topic>Martensite</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Organometallic Chemistry</topic><topic>Recrystallization</topic><topic>Reduction</topic><topic>Spectroscopy/Spectrometry</topic><topic>Steel</topic><topic>Stress corrosion cracking</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Hongchi</creatorcontrib><creatorcontrib>Zhao, Baijie</creatorcontrib><creatorcontrib>Fan, Yi</creatorcontrib><creatorcontrib>Xiao, Kui</creatorcontrib><creatorcontrib>Zhao, Jinbin</creatorcontrib><creatorcontrib>Cheng, Xuequn</creatorcontrib><creatorcontrib>Li, Xiaogang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Acta metallurgica sinica : English letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Hongchi</au><au>Zhao, Baijie</au><au>Fan, Yi</au><au>Xiao, Kui</au><au>Zhao, Jinbin</au><au>Cheng, Xuequn</au><au>Li, Xiaogang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneously Improving Mechanical Properties and Stress Corrosion Cracking Resistance of High-Strength Low-Alloy Steel via Finish Rolling within Non-recrystallization Temperature</atitle><jtitle>Acta metallurgica sinica : English letters</jtitle><stitle>Acta Metall. Sin. (Engl. Lett.)</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>34</volume><issue>4</issue><spage>565</spage><epage>578</epage><pages>565-578</pages><issn>1006-7191</issn><eissn>2194-1289</eissn><abstract>The effect of hot rolling process on microstructure evolution, mechanical properties and stress corrosion cracking (SCC) resistance of high-strength low-alloy (HSLA) steels was investigated by varying the finish rolling temperature (FRT) and total rolling reduction. The results revealed granular bainite with large equiaxed grains was obtained by a total rolling reduction of 60% with the FRT of 950 °C (within recrystallization temperature
T
r
). The larger grain size and much less grain boundaries should account for the relatively lower strength and SCC resistance. A larger rolling reduction of 80% under the same FRT resulted in the formation of massive martensite–austenite (M/A) constituents and resultant low ductility and SCC resistance. In contrast, a good combination of strength, ductility and SCC resistance was obtained via 80% rolling reduction with the FRT of 860 °C (within non-recrystallization temperature
T
nr
), probably because of the fine grain size and M/A constituents, as well as a high density of grain boundary network.</abstract><cop>Beijing</cop><pub>The Chinese Society for Metals</pub><doi>10.1007/s40195-020-01161-6</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1006-7191 |
ispartof | Acta metallurgica sinica : English letters, 2021-04, Vol.34 (4), p.565-578 |
issn | 1006-7191 2194-1289 |
language | eng |
recordid | cdi_proquest_journals_2932255056 |
source | SpringerNature Journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central |
subjects | Bainite Carbon Characterization and Evaluation of Materials Chemistry and Materials Science Constituents Corrosion and Coatings Corrosion resistance Corrosion resistant steels Ductility Ethanol Finish rolling Fractures Grain boundaries Grain size High strength low alloy steels Hot rolling Martensite Materials Science Mechanical properties Metallic Materials Microstructure Nanotechnology Organometallic Chemistry Recrystallization Reduction Spectroscopy/Spectrometry Steel Stress corrosion cracking Tribology |
title | Simultaneously Improving Mechanical Properties and Stress Corrosion Cracking Resistance of High-Strength Low-Alloy Steel via Finish Rolling within Non-recrystallization Temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A05%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneously%20Improving%20Mechanical%20Properties%20and%20Stress%20Corrosion%20Cracking%20Resistance%20of%20High-Strength%20Low-Alloy%20Steel%20via%20Finish%20Rolling%20within%20Non-recrystallization%20Temperature&rft.jtitle=Acta%20metallurgica%20sinica%20:%20English%20letters&rft.au=Ma,%20Hongchi&rft.date=2021-04-01&rft.volume=34&rft.issue=4&rft.spage=565&rft.epage=578&rft.pages=565-578&rft.issn=1006-7191&rft.eissn=2194-1289&rft_id=info:doi/10.1007/s40195-020-01161-6&rft_dat=%3Cproquest_cross%3E2932255056%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932255056&rft_id=info:pmid/&rfr_iscdi=true |