Simultaneously Improving Mechanical Properties and Stress Corrosion Cracking Resistance of High-Strength Low-Alloy Steel via Finish Rolling within Non-recrystallization Temperature

The effect of hot rolling process on microstructure evolution, mechanical properties and stress corrosion cracking (SCC) resistance of high-strength low-alloy (HSLA) steels was investigated by varying the finish rolling temperature (FRT) and total rolling reduction. The results revealed granular bai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta metallurgica sinica : English letters 2021-04, Vol.34 (4), p.565-578
Hauptverfasser: Ma, Hongchi, Zhao, Baijie, Fan, Yi, Xiao, Kui, Zhao, Jinbin, Cheng, Xuequn, Li, Xiaogang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 578
container_issue 4
container_start_page 565
container_title Acta metallurgica sinica : English letters
container_volume 34
creator Ma, Hongchi
Zhao, Baijie
Fan, Yi
Xiao, Kui
Zhao, Jinbin
Cheng, Xuequn
Li, Xiaogang
description The effect of hot rolling process on microstructure evolution, mechanical properties and stress corrosion cracking (SCC) resistance of high-strength low-alloy (HSLA) steels was investigated by varying the finish rolling temperature (FRT) and total rolling reduction. The results revealed granular bainite with large equiaxed grains was obtained by a total rolling reduction of 60% with the FRT of 950 °C (within recrystallization temperature T r ). The larger grain size and much less grain boundaries should account for the relatively lower strength and SCC resistance. A larger rolling reduction of 80% under the same FRT resulted in the formation of massive martensite–austenite (M/A) constituents and resultant low ductility and SCC resistance. In contrast, a good combination of strength, ductility and SCC resistance was obtained via 80% rolling reduction with the FRT of 860 °C (within non-recrystallization temperature T nr ), probably because of the fine grain size and M/A constituents, as well as a high density of grain boundary network.
doi_str_mv 10.1007/s40195-020-01161-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932255056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932255056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-9dadfbea380109a09f7705e94a6e2329bb3f7e5636f8d427f5820c3df65381863</originalsourceid><addsrcrecordid>eNp9kV1vFCEUhonRxLX6B7wi8RrLx8AMl83G2iarNW29JuzMYYfKwgozbdbf5Q-UcZt45xUhPM97yHkRes_oR0Zpe14ayrQklFNCGVOMqBdoxZluCOOdfolWlVKkZZq9Rm9Keag33sh2hX7f-f0cJhshzSUc8fX-kNOjjzv8BfrRRt_bgL_ldIA8eSjYxgHfTRlKweuUcyo-RbzOtv-xOLdQfKlhPeDk8JXfjWSB424a8SY9kYsQ0rH6AAE_eosvffRlxLcphEV_8tPoI_6aIsnQ52ONqg-_7LQMuYd9_YSd5gxv0StnQ4F3z-cZ-n756X59RTY3n6_XFxvSCyUmogc7uC1Y0VFGtaXatS2VoBurgAuut1vhWpBKKNcNDW-d7DjtxeCUFB3rlDhDH065dSc_ZyiTeUhzjnWk4VpwLiWVC8VPVF_XUTI4c8h-b_PRMGqWdsypHVPbMX_bMYskTlKpcNxB_hf9H-sPntWW8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932255056</pqid></control><display><type>article</type><title>Simultaneously Improving Mechanical Properties and Stress Corrosion Cracking Resistance of High-Strength Low-Alloy Steel via Finish Rolling within Non-recrystallization Temperature</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Ma, Hongchi ; Zhao, Baijie ; Fan, Yi ; Xiao, Kui ; Zhao, Jinbin ; Cheng, Xuequn ; Li, Xiaogang</creator><creatorcontrib>Ma, Hongchi ; Zhao, Baijie ; Fan, Yi ; Xiao, Kui ; Zhao, Jinbin ; Cheng, Xuequn ; Li, Xiaogang</creatorcontrib><description>The effect of hot rolling process on microstructure evolution, mechanical properties and stress corrosion cracking (SCC) resistance of high-strength low-alloy (HSLA) steels was investigated by varying the finish rolling temperature (FRT) and total rolling reduction. The results revealed granular bainite with large equiaxed grains was obtained by a total rolling reduction of 60% with the FRT of 950 °C (within recrystallization temperature T r ). The larger grain size and much less grain boundaries should account for the relatively lower strength and SCC resistance. A larger rolling reduction of 80% under the same FRT resulted in the formation of massive martensite–austenite (M/A) constituents and resultant low ductility and SCC resistance. In contrast, a good combination of strength, ductility and SCC resistance was obtained via 80% rolling reduction with the FRT of 860 °C (within non-recrystallization temperature T nr ), probably because of the fine grain size and M/A constituents, as well as a high density of grain boundary network.</description><identifier>ISSN: 1006-7191</identifier><identifier>EISSN: 2194-1289</identifier><identifier>DOI: 10.1007/s40195-020-01161-6</identifier><language>eng</language><publisher>Beijing: The Chinese Society for Metals</publisher><subject>Bainite ; Carbon ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Constituents ; Corrosion and Coatings ; Corrosion resistance ; Corrosion resistant steels ; Ductility ; Ethanol ; Finish rolling ; Fractures ; Grain boundaries ; Grain size ; High strength low alloy steels ; Hot rolling ; Martensite ; Materials Science ; Mechanical properties ; Metallic Materials ; Microstructure ; Nanotechnology ; Organometallic Chemistry ; Recrystallization ; Reduction ; Spectroscopy/Spectrometry ; Steel ; Stress corrosion cracking ; Tribology</subject><ispartof>Acta metallurgica sinica : English letters, 2021-04, Vol.34 (4), p.565-578</ispartof><rights>The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-9dadfbea380109a09f7705e94a6e2329bb3f7e5636f8d427f5820c3df65381863</citedby><cites>FETCH-LOGICAL-c363t-9dadfbea380109a09f7705e94a6e2329bb3f7e5636f8d427f5820c3df65381863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40195-020-01161-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2932255056?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Ma, Hongchi</creatorcontrib><creatorcontrib>Zhao, Baijie</creatorcontrib><creatorcontrib>Fan, Yi</creatorcontrib><creatorcontrib>Xiao, Kui</creatorcontrib><creatorcontrib>Zhao, Jinbin</creatorcontrib><creatorcontrib>Cheng, Xuequn</creatorcontrib><creatorcontrib>Li, Xiaogang</creatorcontrib><title>Simultaneously Improving Mechanical Properties and Stress Corrosion Cracking Resistance of High-Strength Low-Alloy Steel via Finish Rolling within Non-recrystallization Temperature</title><title>Acta metallurgica sinica : English letters</title><addtitle>Acta Metall. Sin. (Engl. Lett.)</addtitle><description>The effect of hot rolling process on microstructure evolution, mechanical properties and stress corrosion cracking (SCC) resistance of high-strength low-alloy (HSLA) steels was investigated by varying the finish rolling temperature (FRT) and total rolling reduction. The results revealed granular bainite with large equiaxed grains was obtained by a total rolling reduction of 60% with the FRT of 950 °C (within recrystallization temperature T r ). The larger grain size and much less grain boundaries should account for the relatively lower strength and SCC resistance. A larger rolling reduction of 80% under the same FRT resulted in the formation of massive martensite–austenite (M/A) constituents and resultant low ductility and SCC resistance. In contrast, a good combination of strength, ductility and SCC resistance was obtained via 80% rolling reduction with the FRT of 860 °C (within non-recrystallization temperature T nr ), probably because of the fine grain size and M/A constituents, as well as a high density of grain boundary network.</description><subject>Bainite</subject><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Constituents</subject><subject>Corrosion and Coatings</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant steels</subject><subject>Ductility</subject><subject>Ethanol</subject><subject>Finish rolling</subject><subject>Fractures</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>High strength low alloy steels</subject><subject>Hot rolling</subject><subject>Martensite</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Organometallic Chemistry</subject><subject>Recrystallization</subject><subject>Reduction</subject><subject>Spectroscopy/Spectrometry</subject><subject>Steel</subject><subject>Stress corrosion cracking</subject><subject>Tribology</subject><issn>1006-7191</issn><issn>2194-1289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kV1vFCEUhonRxLX6B7wi8RrLx8AMl83G2iarNW29JuzMYYfKwgozbdbf5Q-UcZt45xUhPM97yHkRes_oR0Zpe14ayrQklFNCGVOMqBdoxZluCOOdfolWlVKkZZq9Rm9Keag33sh2hX7f-f0cJhshzSUc8fX-kNOjjzv8BfrRRt_bgL_ldIA8eSjYxgHfTRlKweuUcyo-RbzOtv-xOLdQfKlhPeDk8JXfjWSB424a8SY9kYsQ0rH6AAE_eosvffRlxLcphEV_8tPoI_6aIsnQ52ONqg-_7LQMuYd9_YSd5gxv0StnQ4F3z-cZ-n756X59RTY3n6_XFxvSCyUmogc7uC1Y0VFGtaXatS2VoBurgAuut1vhWpBKKNcNDW-d7DjtxeCUFB3rlDhDH065dSc_ZyiTeUhzjnWk4VpwLiWVC8VPVF_XUTI4c8h-b_PRMGqWdsypHVPbMX_bMYskTlKpcNxB_hf9H-sPntWW8w</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Ma, Hongchi</creator><creator>Zhao, Baijie</creator><creator>Fan, Yi</creator><creator>Xiao, Kui</creator><creator>Zhao, Jinbin</creator><creator>Cheng, Xuequn</creator><creator>Li, Xiaogang</creator><general>The Chinese Society for Metals</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20210401</creationdate><title>Simultaneously Improving Mechanical Properties and Stress Corrosion Cracking Resistance of High-Strength Low-Alloy Steel via Finish Rolling within Non-recrystallization Temperature</title><author>Ma, Hongchi ; Zhao, Baijie ; Fan, Yi ; Xiao, Kui ; Zhao, Jinbin ; Cheng, Xuequn ; Li, Xiaogang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-9dadfbea380109a09f7705e94a6e2329bb3f7e5636f8d427f5820c3df65381863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bainite</topic><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Constituents</topic><topic>Corrosion and Coatings</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant steels</topic><topic>Ductility</topic><topic>Ethanol</topic><topic>Finish rolling</topic><topic>Fractures</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>High strength low alloy steels</topic><topic>Hot rolling</topic><topic>Martensite</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Organometallic Chemistry</topic><topic>Recrystallization</topic><topic>Reduction</topic><topic>Spectroscopy/Spectrometry</topic><topic>Steel</topic><topic>Stress corrosion cracking</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Hongchi</creatorcontrib><creatorcontrib>Zhao, Baijie</creatorcontrib><creatorcontrib>Fan, Yi</creatorcontrib><creatorcontrib>Xiao, Kui</creatorcontrib><creatorcontrib>Zhao, Jinbin</creatorcontrib><creatorcontrib>Cheng, Xuequn</creatorcontrib><creatorcontrib>Li, Xiaogang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Acta metallurgica sinica : English letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Hongchi</au><au>Zhao, Baijie</au><au>Fan, Yi</au><au>Xiao, Kui</au><au>Zhao, Jinbin</au><au>Cheng, Xuequn</au><au>Li, Xiaogang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneously Improving Mechanical Properties and Stress Corrosion Cracking Resistance of High-Strength Low-Alloy Steel via Finish Rolling within Non-recrystallization Temperature</atitle><jtitle>Acta metallurgica sinica : English letters</jtitle><stitle>Acta Metall. Sin. (Engl. Lett.)</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>34</volume><issue>4</issue><spage>565</spage><epage>578</epage><pages>565-578</pages><issn>1006-7191</issn><eissn>2194-1289</eissn><abstract>The effect of hot rolling process on microstructure evolution, mechanical properties and stress corrosion cracking (SCC) resistance of high-strength low-alloy (HSLA) steels was investigated by varying the finish rolling temperature (FRT) and total rolling reduction. The results revealed granular bainite with large equiaxed grains was obtained by a total rolling reduction of 60% with the FRT of 950 °C (within recrystallization temperature T r ). The larger grain size and much less grain boundaries should account for the relatively lower strength and SCC resistance. A larger rolling reduction of 80% under the same FRT resulted in the formation of massive martensite–austenite (M/A) constituents and resultant low ductility and SCC resistance. In contrast, a good combination of strength, ductility and SCC resistance was obtained via 80% rolling reduction with the FRT of 860 °C (within non-recrystallization temperature T nr ), probably because of the fine grain size and M/A constituents, as well as a high density of grain boundary network.</abstract><cop>Beijing</cop><pub>The Chinese Society for Metals</pub><doi>10.1007/s40195-020-01161-6</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1006-7191
ispartof Acta metallurgica sinica : English letters, 2021-04, Vol.34 (4), p.565-578
issn 1006-7191
2194-1289
language eng
recordid cdi_proquest_journals_2932255056
source SpringerNature Journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central
subjects Bainite
Carbon
Characterization and Evaluation of Materials
Chemistry and Materials Science
Constituents
Corrosion and Coatings
Corrosion resistance
Corrosion resistant steels
Ductility
Ethanol
Finish rolling
Fractures
Grain boundaries
Grain size
High strength low alloy steels
Hot rolling
Martensite
Materials Science
Mechanical properties
Metallic Materials
Microstructure
Nanotechnology
Organometallic Chemistry
Recrystallization
Reduction
Spectroscopy/Spectrometry
Steel
Stress corrosion cracking
Tribology
title Simultaneously Improving Mechanical Properties and Stress Corrosion Cracking Resistance of High-Strength Low-Alloy Steel via Finish Rolling within Non-recrystallization Temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A05%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneously%20Improving%20Mechanical%20Properties%20and%20Stress%20Corrosion%20Cracking%20Resistance%20of%20High-Strength%20Low-Alloy%20Steel%20via%20Finish%20Rolling%20within%20Non-recrystallization%20Temperature&rft.jtitle=Acta%20metallurgica%20sinica%20:%20English%20letters&rft.au=Ma,%20Hongchi&rft.date=2021-04-01&rft.volume=34&rft.issue=4&rft.spage=565&rft.epage=578&rft.pages=565-578&rft.issn=1006-7191&rft.eissn=2194-1289&rft_id=info:doi/10.1007/s40195-020-01161-6&rft_dat=%3Cproquest_cross%3E2932255056%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932255056&rft_id=info:pmid/&rfr_iscdi=true