Electrospinning of Neat Graphene Nanofibers

Macroscopic assembly of graphene sheets has renovated the preparation of neat carbonaceous fibers with integrating high performance and superior functionalities, beyond the pyrolysis of conventional polymeric precursors. To date, graphene microfibers by the liquid crystalline wet-spinning method hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced fiber materials (Online) 2022-04, Vol.4 (2), p.268-279
Hauptverfasser: Han, Zhanpo, Wang, Jiaqing, Liu, Senping, Zhang, Qinghua, Liu, Yingjun, Tan, Yeqiang, Luo, Shiyu, Guo, Fan, Ma, Jingyu, Li, Peng, Ming, Xin, Gao, Chao, Xu, Zhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 279
container_issue 2
container_start_page 268
container_title Advanced fiber materials (Online)
container_volume 4
creator Han, Zhanpo
Wang, Jiaqing
Liu, Senping
Zhang, Qinghua
Liu, Yingjun
Tan, Yeqiang
Luo, Shiyu
Guo, Fan
Ma, Jingyu
Li, Peng
Ming, Xin
Gao, Chao
Xu, Zhen
description Macroscopic assembly of graphene sheets has renovated the preparation of neat carbonaceous fibers with integrating high performance and superior functionalities, beyond the pyrolysis of conventional polymeric precursors. To date, graphene microfibers by the liquid crystalline wet-spinning method have been established. However, how to reliably prepare continuous neat graphene nanofibers remains unknown. Here, we present the electrospinning of neat graphene nanofibers enabled by modulating colossally extensional flow state of graphene oxide liquid crystals. We use polymer with mega molecular weight as transient additives to realize the colossal extensional flow and electrospinning. The neat graphene nanofibers feature high electronic quality and crystallinity and exhibit high electrical conductivity of 2.02 × 10 6 S/m that is to be comparable with single crystal graphite whisker. The electrospinning of graphene nanofibers was extended to prepare large-area fabric with high flexibility and superior specific electrical/thermal conductivities. The electrospinning of graphene nanofibers opens the door to nanofibers of rich two-dimensional sheets and the neat graphene nanofibers may grow to be a new species after conventional carbonaceous nanofibers and whiskers in broad functional applications. Graphic abstract Electrospinning of neat graphene nanofibers is realized by achieving the colossal extension flow of GO dispersion with the assistance of mega polymer. Neat graphene nanofibers and fabrics show good continuity, high crystallinity, excellent conductivity and thermal conductivity, having great potentials in extensive applications.
doi_str_mv 10.1007/s42765-021-00105-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932254831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932254831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f5d9f8a1b9522f8f4c54ebbf741748b7dda69f3f7a44b8a44ee76f20fe85303e3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEhX0DzBFYkSB89munRFVpSBVZQGJzXLSc0lVnGCnA_8eQxBsLHc3vPfu6WPsgsM1B9A3SaKeqRKQlwAcVGmO2AQVylJX4uX490Z-yqYp7QAANQdEmLCrxZ6aIXapb0Now7bofLEmNxTL6PpXClSsXeh8W1NM5-zEu32i6c8-Y893i6f5fbl6XD7Mb1dlI3g1lF5tKm8cryuF6I2XjZJU115LrqWp9WbjZpUXXjspa5MHkZ55BE9GCRAkztjlmNvH7v1AabC77hBDfmmxEohKGsGzCkdVk9unSN72sX1z8cNysF9c7MjFZi72m4s12SRGU8risKX4F_2P6xPmoWRi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932254831</pqid></control><display><type>article</type><title>Electrospinning of Neat Graphene Nanofibers</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Han, Zhanpo ; Wang, Jiaqing ; Liu, Senping ; Zhang, Qinghua ; Liu, Yingjun ; Tan, Yeqiang ; Luo, Shiyu ; Guo, Fan ; Ma, Jingyu ; Li, Peng ; Ming, Xin ; Gao, Chao ; Xu, Zhen</creator><creatorcontrib>Han, Zhanpo ; Wang, Jiaqing ; Liu, Senping ; Zhang, Qinghua ; Liu, Yingjun ; Tan, Yeqiang ; Luo, Shiyu ; Guo, Fan ; Ma, Jingyu ; Li, Peng ; Ming, Xin ; Gao, Chao ; Xu, Zhen</creatorcontrib><description>Macroscopic assembly of graphene sheets has renovated the preparation of neat carbonaceous fibers with integrating high performance and superior functionalities, beyond the pyrolysis of conventional polymeric precursors. To date, graphene microfibers by the liquid crystalline wet-spinning method have been established. However, how to reliably prepare continuous neat graphene nanofibers remains unknown. Here, we present the electrospinning of neat graphene nanofibers enabled by modulating colossally extensional flow state of graphene oxide liquid crystals. We use polymer with mega molecular weight as transient additives to realize the colossal extensional flow and electrospinning. The neat graphene nanofibers feature high electronic quality and crystallinity and exhibit high electrical conductivity of 2.02 × 10 6 S/m that is to be comparable with single crystal graphite whisker. The electrospinning of graphene nanofibers was extended to prepare large-area fabric with high flexibility and superior specific electrical/thermal conductivities. The electrospinning of graphene nanofibers opens the door to nanofibers of rich two-dimensional sheets and the neat graphene nanofibers may grow to be a new species after conventional carbonaceous nanofibers and whiskers in broad functional applications. Graphic abstract Electrospinning of neat graphene nanofibers is realized by achieving the colossal extension flow of GO dispersion with the assistance of mega polymer. Neat graphene nanofibers and fabrics show good continuity, high crystallinity, excellent conductivity and thermal conductivity, having great potentials in extensive applications.</description><identifier>ISSN: 2524-7921</identifier><identifier>EISSN: 2524-793X</identifier><identifier>DOI: 10.1007/s42765-021-00105-8</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Additives ; Carbon ; Chemistry and Materials Science ; Chinese Materials Conference 2021-Division of Fiber Materials and Composite Technology &amp; The 70th Anniversary of Donghua University ; Conductivity ; Crystallinity ; Electric fields ; Electrical resistivity ; Electrospinning ; Graphene ; Heat conductivity ; Liquid crystals ; Materials Engineering ; Materials Science ; Microfibers ; Molecular weight ; Morphology ; Nanofibers ; Nanoscale Science and Technology ; Polymer Sciences ; Polymers ; Prepolymers ; Pyrolysis ; Renewable and Green Energy ; Research Article ; Rheology ; Single crystals ; Textile composites ; Textile Engineering ; Thermal conductivity</subject><ispartof>Advanced fiber materials (Online), 2022-04, Vol.4 (2), p.268-279</ispartof><rights>Donghua University, Shanghai, China 2021</rights><rights>Donghua University, Shanghai, China 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f5d9f8a1b9522f8f4c54ebbf741748b7dda69f3f7a44b8a44ee76f20fe85303e3</citedby><cites>FETCH-LOGICAL-c319t-f5d9f8a1b9522f8f4c54ebbf741748b7dda69f3f7a44b8a44ee76f20fe85303e3</cites><orcidid>0000-0001-9282-9753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42765-021-00105-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2932254831?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Han, Zhanpo</creatorcontrib><creatorcontrib>Wang, Jiaqing</creatorcontrib><creatorcontrib>Liu, Senping</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Liu, Yingjun</creatorcontrib><creatorcontrib>Tan, Yeqiang</creatorcontrib><creatorcontrib>Luo, Shiyu</creatorcontrib><creatorcontrib>Guo, Fan</creatorcontrib><creatorcontrib>Ma, Jingyu</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Ming, Xin</creatorcontrib><creatorcontrib>Gao, Chao</creatorcontrib><creatorcontrib>Xu, Zhen</creatorcontrib><title>Electrospinning of Neat Graphene Nanofibers</title><title>Advanced fiber materials (Online)</title><addtitle>Adv. Fiber Mater</addtitle><description>Macroscopic assembly of graphene sheets has renovated the preparation of neat carbonaceous fibers with integrating high performance and superior functionalities, beyond the pyrolysis of conventional polymeric precursors. To date, graphene microfibers by the liquid crystalline wet-spinning method have been established. However, how to reliably prepare continuous neat graphene nanofibers remains unknown. Here, we present the electrospinning of neat graphene nanofibers enabled by modulating colossally extensional flow state of graphene oxide liquid crystals. We use polymer with mega molecular weight as transient additives to realize the colossal extensional flow and electrospinning. The neat graphene nanofibers feature high electronic quality and crystallinity and exhibit high electrical conductivity of 2.02 × 10 6 S/m that is to be comparable with single crystal graphite whisker. The electrospinning of graphene nanofibers was extended to prepare large-area fabric with high flexibility and superior specific electrical/thermal conductivities. The electrospinning of graphene nanofibers opens the door to nanofibers of rich two-dimensional sheets and the neat graphene nanofibers may grow to be a new species after conventional carbonaceous nanofibers and whiskers in broad functional applications. Graphic abstract Electrospinning of neat graphene nanofibers is realized by achieving the colossal extension flow of GO dispersion with the assistance of mega polymer. Neat graphene nanofibers and fabrics show good continuity, high crystallinity, excellent conductivity and thermal conductivity, having great potentials in extensive applications.</description><subject>Additives</subject><subject>Carbon</subject><subject>Chemistry and Materials Science</subject><subject>Chinese Materials Conference 2021-Division of Fiber Materials and Composite Technology &amp; The 70th Anniversary of Donghua University</subject><subject>Conductivity</subject><subject>Crystallinity</subject><subject>Electric fields</subject><subject>Electrical resistivity</subject><subject>Electrospinning</subject><subject>Graphene</subject><subject>Heat conductivity</subject><subject>Liquid crystals</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Microfibers</subject><subject>Molecular weight</subject><subject>Morphology</subject><subject>Nanofibers</subject><subject>Nanoscale Science and Technology</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Prepolymers</subject><subject>Pyrolysis</subject><subject>Renewable and Green Energy</subject><subject>Research Article</subject><subject>Rheology</subject><subject>Single crystals</subject><subject>Textile composites</subject><subject>Textile Engineering</subject><subject>Thermal conductivity</subject><issn>2524-7921</issn><issn>2524-793X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kDFPwzAQhS0EEhX0DzBFYkSB89munRFVpSBVZQGJzXLSc0lVnGCnA_8eQxBsLHc3vPfu6WPsgsM1B9A3SaKeqRKQlwAcVGmO2AQVylJX4uX490Z-yqYp7QAANQdEmLCrxZ6aIXapb0Now7bofLEmNxTL6PpXClSsXeh8W1NM5-zEu32i6c8-Y893i6f5fbl6XD7Mb1dlI3g1lF5tKm8cryuF6I2XjZJU115LrqWp9WbjZpUXXjspa5MHkZ55BE9GCRAkztjlmNvH7v1AabC77hBDfmmxEohKGsGzCkdVk9unSN72sX1z8cNysF9c7MjFZi72m4s12SRGU8risKX4F_2P6xPmoWRi</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Han, Zhanpo</creator><creator>Wang, Jiaqing</creator><creator>Liu, Senping</creator><creator>Zhang, Qinghua</creator><creator>Liu, Yingjun</creator><creator>Tan, Yeqiang</creator><creator>Luo, Shiyu</creator><creator>Guo, Fan</creator><creator>Ma, Jingyu</creator><creator>Li, Peng</creator><creator>Ming, Xin</creator><creator>Gao, Chao</creator><creator>Xu, Zhen</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-9282-9753</orcidid></search><sort><creationdate>20220401</creationdate><title>Electrospinning of Neat Graphene Nanofibers</title><author>Han, Zhanpo ; Wang, Jiaqing ; Liu, Senping ; Zhang, Qinghua ; Liu, Yingjun ; Tan, Yeqiang ; Luo, Shiyu ; Guo, Fan ; Ma, Jingyu ; Li, Peng ; Ming, Xin ; Gao, Chao ; Xu, Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f5d9f8a1b9522f8f4c54ebbf741748b7dda69f3f7a44b8a44ee76f20fe85303e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additives</topic><topic>Carbon</topic><topic>Chemistry and Materials Science</topic><topic>Chinese Materials Conference 2021-Division of Fiber Materials and Composite Technology &amp; The 70th Anniversary of Donghua University</topic><topic>Conductivity</topic><topic>Crystallinity</topic><topic>Electric fields</topic><topic>Electrical resistivity</topic><topic>Electrospinning</topic><topic>Graphene</topic><topic>Heat conductivity</topic><topic>Liquid crystals</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Microfibers</topic><topic>Molecular weight</topic><topic>Morphology</topic><topic>Nanofibers</topic><topic>Nanoscale Science and Technology</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Prepolymers</topic><topic>Pyrolysis</topic><topic>Renewable and Green Energy</topic><topic>Research Article</topic><topic>Rheology</topic><topic>Single crystals</topic><topic>Textile composites</topic><topic>Textile Engineering</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Zhanpo</creatorcontrib><creatorcontrib>Wang, Jiaqing</creatorcontrib><creatorcontrib>Liu, Senping</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Liu, Yingjun</creatorcontrib><creatorcontrib>Tan, Yeqiang</creatorcontrib><creatorcontrib>Luo, Shiyu</creatorcontrib><creatorcontrib>Guo, Fan</creatorcontrib><creatorcontrib>Ma, Jingyu</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Ming, Xin</creatorcontrib><creatorcontrib>Gao, Chao</creatorcontrib><creatorcontrib>Xu, Zhen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Advanced fiber materials (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Zhanpo</au><au>Wang, Jiaqing</au><au>Liu, Senping</au><au>Zhang, Qinghua</au><au>Liu, Yingjun</au><au>Tan, Yeqiang</au><au>Luo, Shiyu</au><au>Guo, Fan</au><au>Ma, Jingyu</au><au>Li, Peng</au><au>Ming, Xin</au><au>Gao, Chao</au><au>Xu, Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospinning of Neat Graphene Nanofibers</atitle><jtitle>Advanced fiber materials (Online)</jtitle><stitle>Adv. Fiber Mater</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>4</volume><issue>2</issue><spage>268</spage><epage>279</epage><pages>268-279</pages><issn>2524-7921</issn><eissn>2524-793X</eissn><abstract>Macroscopic assembly of graphene sheets has renovated the preparation of neat carbonaceous fibers with integrating high performance and superior functionalities, beyond the pyrolysis of conventional polymeric precursors. To date, graphene microfibers by the liquid crystalline wet-spinning method have been established. However, how to reliably prepare continuous neat graphene nanofibers remains unknown. Here, we present the electrospinning of neat graphene nanofibers enabled by modulating colossally extensional flow state of graphene oxide liquid crystals. We use polymer with mega molecular weight as transient additives to realize the colossal extensional flow and electrospinning. The neat graphene nanofibers feature high electronic quality and crystallinity and exhibit high electrical conductivity of 2.02 × 10 6 S/m that is to be comparable with single crystal graphite whisker. The electrospinning of graphene nanofibers was extended to prepare large-area fabric with high flexibility and superior specific electrical/thermal conductivities. The electrospinning of graphene nanofibers opens the door to nanofibers of rich two-dimensional sheets and the neat graphene nanofibers may grow to be a new species after conventional carbonaceous nanofibers and whiskers in broad functional applications. Graphic abstract Electrospinning of neat graphene nanofibers is realized by achieving the colossal extension flow of GO dispersion with the assistance of mega polymer. Neat graphene nanofibers and fabrics show good continuity, high crystallinity, excellent conductivity and thermal conductivity, having great potentials in extensive applications.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s42765-021-00105-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9282-9753</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2524-7921
ispartof Advanced fiber materials (Online), 2022-04, Vol.4 (2), p.268-279
issn 2524-7921
2524-793X
language eng
recordid cdi_proquest_journals_2932254831
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Additives
Carbon
Chemistry and Materials Science
Chinese Materials Conference 2021-Division of Fiber Materials and Composite Technology & The 70th Anniversary of Donghua University
Conductivity
Crystallinity
Electric fields
Electrical resistivity
Electrospinning
Graphene
Heat conductivity
Liquid crystals
Materials Engineering
Materials Science
Microfibers
Molecular weight
Morphology
Nanofibers
Nanoscale Science and Technology
Polymer Sciences
Polymers
Prepolymers
Pyrolysis
Renewable and Green Energy
Research Article
Rheology
Single crystals
Textile composites
Textile Engineering
Thermal conductivity
title Electrospinning of Neat Graphene Nanofibers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A53%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospinning%20of%20Neat%20Graphene%20Nanofibers&rft.jtitle=Advanced%20fiber%20materials%20(Online)&rft.au=Han,%20Zhanpo&rft.date=2022-04-01&rft.volume=4&rft.issue=2&rft.spage=268&rft.epage=279&rft.pages=268-279&rft.issn=2524-7921&rft.eissn=2524-793X&rft_id=info:doi/10.1007/s42765-021-00105-8&rft_dat=%3Cproquest_cross%3E2932254831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932254831&rft_id=info:pmid/&rfr_iscdi=true