Iris-Based Biometric Identification Using a Combination of the Right - Left Iris Statistical Features

A combination between the information extracted for both right iris and left iris could increase the efficacy of the biometric recognition systems. In this paper, we propose a biometric identification method based on density of image patterns extracted from human iris images and the combination and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2024-02, Vol.2701 (1), p.12006
Hauptverfasser: Dincă Lăzărescu, A M, Moldovanu, S, Moraru, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12006
container_title Journal of physics. Conference series
container_volume 2701
creator Dincă Lăzărescu, A M
Moldovanu, S
Moraru, L
description A combination between the information extracted for both right iris and left iris could increase the efficacy of the biometric recognition systems. In this paper, we propose a biometric identification method based on density of image patterns extracted from human iris images and the combination and comparison of the right iris and the left iris characteristics. The density of the patters approach for processed images can be a new biometric feature used to implement a biometric recognition system with high performance when a small feature dimension is used. In this way, we can maximize the retention of the effective biometric information. The experiments were conducted on the MMU Iris Database containing 225 images of the left eye and 225 images of the right eye. Two morphological Top-hat and Hit or Miss transforms were implemented to find out the particular pattern of pixels. They allow for the enhancement of detail in images. Then, a statistical feature extraction technique is employed to derive the density of the patterns in morphological transformed images. To assess the density of the patterns differences between the right and left iris data groups, the Pearson’s correlation coefficient (PCC) is computed. We reported very good results with a PCC of 0.6164 (strong and positive correlation) for Top-hat morphological operation whilst the Hit or Miss transform returns a PCC of 0.0127 so there is no relationship between the density of the patterns in the right and left irises.
doi_str_mv 10.1088/1742-6596/2701/1/012006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932185527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932185527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2746-37fb897b1df613fb6f904d140203c2995fcabfcf39f5368acaad56845c4478b83</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKe_wYB3Qm0-2iS9dMPpZKA4dx3SNNkytqYm2YX_3pbKRBDMTcLJ874HniS5RvAOQc4zxHKc0qKkGWYQZSiDCENIT5LR8ef0-Ob8PLkIYQsh6Q4bJXrubUgnMugaTKzb6-itAvNaN9Eaq2S0rgGrYJs1kGDq9pVthpkzIG40eLPrTQQpWGgTQd8FlrEDQuyyOzDTMh68DpfJmZG7oK--73Gymj28T5_SxcvjfHq_SBVmOU0JMxUvWYVqQxExFTUlzGuUQwyJwmVZGCUrowwpTUEol0rKuqA8L1SeM15xMk5uht7Wu4-DDlFs3cE33UqBS4IRLwrMOooNlPIuBK-NaL3dS_8pEBS9U9HbEr050TsVSAxOu-TtkLSu_al-fp0uf4OirU0Hkz_g_1Z8AT91hb8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932185527</pqid></control><display><type>article</type><title>Iris-Based Biometric Identification Using a Combination of the Right - Left Iris Statistical Features</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Dincă Lăzărescu, A M ; Moldovanu, S ; Moraru, L</creator><creatorcontrib>Dincă Lăzărescu, A M ; Moldovanu, S ; Moraru, L</creatorcontrib><description>A combination between the information extracted for both right iris and left iris could increase the efficacy of the biometric recognition systems. In this paper, we propose a biometric identification method based on density of image patterns extracted from human iris images and the combination and comparison of the right iris and the left iris characteristics. The density of the patters approach for processed images can be a new biometric feature used to implement a biometric recognition system with high performance when a small feature dimension is used. In this way, we can maximize the retention of the effective biometric information. The experiments were conducted on the MMU Iris Database containing 225 images of the left eye and 225 images of the right eye. Two morphological Top-hat and Hit or Miss transforms were implemented to find out the particular pattern of pixels. They allow for the enhancement of detail in images. Then, a statistical feature extraction technique is employed to derive the density of the patterns in morphological transformed images. To assess the density of the patterns differences between the right and left iris data groups, the Pearson’s correlation coefficient (PCC) is computed. We reported very good results with a PCC of 0.6164 (strong and positive correlation) for Top-hat morphological operation whilst the Hit or Miss transform returns a PCC of 0.0127 so there is no relationship between the density of the patterns in the right and left irises.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2701/1/012006</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Biometric identification ; Biometric recognition systems ; Biometrics ; Correlation coefficients ; Density ; Feature extraction ; Identification methods ; Image enhancement ; Morphology</subject><ispartof>Journal of physics. Conference series, 2024-02, Vol.2701 (1), p.12006</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2701/1/012006/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>315,782,786,27931,27932,38875,38897,53847,53874</link.rule.ids></links><search><creatorcontrib>Dincă Lăzărescu, A M</creatorcontrib><creatorcontrib>Moldovanu, S</creatorcontrib><creatorcontrib>Moraru, L</creatorcontrib><title>Iris-Based Biometric Identification Using a Combination of the Right - Left Iris Statistical Features</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>A combination between the information extracted for both right iris and left iris could increase the efficacy of the biometric recognition systems. In this paper, we propose a biometric identification method based on density of image patterns extracted from human iris images and the combination and comparison of the right iris and the left iris characteristics. The density of the patters approach for processed images can be a new biometric feature used to implement a biometric recognition system with high performance when a small feature dimension is used. In this way, we can maximize the retention of the effective biometric information. The experiments were conducted on the MMU Iris Database containing 225 images of the left eye and 225 images of the right eye. Two morphological Top-hat and Hit or Miss transforms were implemented to find out the particular pattern of pixels. They allow for the enhancement of detail in images. Then, a statistical feature extraction technique is employed to derive the density of the patterns in morphological transformed images. To assess the density of the patterns differences between the right and left iris data groups, the Pearson’s correlation coefficient (PCC) is computed. We reported very good results with a PCC of 0.6164 (strong and positive correlation) for Top-hat morphological operation whilst the Hit or Miss transform returns a PCC of 0.0127 so there is no relationship between the density of the patterns in the right and left irises.</description><subject>Biometric identification</subject><subject>Biometric recognition systems</subject><subject>Biometrics</subject><subject>Correlation coefficients</subject><subject>Density</subject><subject>Feature extraction</subject><subject>Identification methods</subject><subject>Image enhancement</subject><subject>Morphology</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhosoOKe_wYB3Qm0-2iS9dMPpZKA4dx3SNNkytqYm2YX_3pbKRBDMTcLJ874HniS5RvAOQc4zxHKc0qKkGWYQZSiDCENIT5LR8ef0-Ob8PLkIYQsh6Q4bJXrubUgnMugaTKzb6-itAvNaN9Eaq2S0rgGrYJs1kGDq9pVthpkzIG40eLPrTQQpWGgTQd8FlrEDQuyyOzDTMh68DpfJmZG7oK--73Gymj28T5_SxcvjfHq_SBVmOU0JMxUvWYVqQxExFTUlzGuUQwyJwmVZGCUrowwpTUEol0rKuqA8L1SeM15xMk5uht7Wu4-DDlFs3cE33UqBS4IRLwrMOooNlPIuBK-NaL3dS_8pEBS9U9HbEr050TsVSAxOu-TtkLSu_al-fp0uf4OirU0Hkz_g_1Z8AT91hb8</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Dincă Lăzărescu, A M</creator><creator>Moldovanu, S</creator><creator>Moraru, L</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240201</creationdate><title>Iris-Based Biometric Identification Using a Combination of the Right - Left Iris Statistical Features</title><author>Dincă Lăzărescu, A M ; Moldovanu, S ; Moraru, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2746-37fb897b1df613fb6f904d140203c2995fcabfcf39f5368acaad56845c4478b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biometric identification</topic><topic>Biometric recognition systems</topic><topic>Biometrics</topic><topic>Correlation coefficients</topic><topic>Density</topic><topic>Feature extraction</topic><topic>Identification methods</topic><topic>Image enhancement</topic><topic>Morphology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dincă Lăzărescu, A M</creatorcontrib><creatorcontrib>Moldovanu, S</creatorcontrib><creatorcontrib>Moraru, L</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dincă Lăzărescu, A M</au><au>Moldovanu, S</au><au>Moraru, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iris-Based Biometric Identification Using a Combination of the Right - Left Iris Statistical Features</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>2701</volume><issue>1</issue><spage>12006</spage><pages>12006-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>A combination between the information extracted for both right iris and left iris could increase the efficacy of the biometric recognition systems. In this paper, we propose a biometric identification method based on density of image patterns extracted from human iris images and the combination and comparison of the right iris and the left iris characteristics. The density of the patters approach for processed images can be a new biometric feature used to implement a biometric recognition system with high performance when a small feature dimension is used. In this way, we can maximize the retention of the effective biometric information. The experiments were conducted on the MMU Iris Database containing 225 images of the left eye and 225 images of the right eye. Two morphological Top-hat and Hit or Miss transforms were implemented to find out the particular pattern of pixels. They allow for the enhancement of detail in images. Then, a statistical feature extraction technique is employed to derive the density of the patterns in morphological transformed images. To assess the density of the patterns differences between the right and left iris data groups, the Pearson’s correlation coefficient (PCC) is computed. We reported very good results with a PCC of 0.6164 (strong and positive correlation) for Top-hat morphological operation whilst the Hit or Miss transform returns a PCC of 0.0127 so there is no relationship between the density of the patterns in the right and left irises.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2701/1/012006</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2024-02, Vol.2701 (1), p.12006
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2932185527
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics Open Access Journal Titles; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biometric identification
Biometric recognition systems
Biometrics
Correlation coefficients
Density
Feature extraction
Identification methods
Image enhancement
Morphology
title Iris-Based Biometric Identification Using a Combination of the Right - Left Iris Statistical Features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T07%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iris-Based%20Biometric%20Identification%20Using%20a%20Combination%20of%20the%20Right%20-%20Left%20Iris%20Statistical%20Features&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Dinc%C4%83%20L%C4%83z%C4%83rescu,%20A%20M&rft.date=2024-02-01&rft.volume=2701&rft.issue=1&rft.spage=12006&rft.pages=12006-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2701/1/012006&rft_dat=%3Cproquest_cross%3E2932185527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932185527&rft_id=info:pmid/&rfr_iscdi=true