Towards Semantic Aspect-Based Sentiment Analysis for Arabic Reviews

Sentiment analysis is a text mining discipline that aims to identify and extract subjective information. This growing field results in the emergence of three levels of granularity (document, sentence, and aspect). However, both the document and sentence levels do not find what exactly the opinion ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of information systems in the service sector 2020-10, Vol.12 (4), p.1-13
Hauptverfasser: Behdenna, Salima, Barigou, Fatiha, Belalem, Ghalem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 4
container_start_page 1
container_title International journal of information systems in the service sector
container_volume 12
creator Behdenna, Salima
Barigou, Fatiha
Belalem, Ghalem
description Sentiment analysis is a text mining discipline that aims to identify and extract subjective information. This growing field results in the emergence of three levels of granularity (document, sentence, and aspect). However, both the document and sentence levels do not find what exactly the opinion holder likes and dislikes. Furthermore, most research in this field deals with English texts, and very limited researches are undertaken on Arabic language. In this paper, the authors propose a semantic aspect-based sentiment analysis approach for Arabic reviews. This approach utilizes the semantic of description logics and linguistic rules in the identification of opinion targets and their polarity.
doi_str_mv 10.4018/IJISSS.2020100101
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2931966409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760500600</galeid><sourcerecordid>A760500600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-77d10a0185539a600eeb3f9a5833d196d40acce2989bb51fb6ac45d3036bcbe13</originalsourceid><addsrcrecordid>eNpFkF9LwzAUxYMoOKcfwLeCr3beNE3aPNbhn8lAsPM5JGlaO7Z15raOfXsjFYXLuZfDj8PlEHJNYZYCze8WL4uyLGcJJEAhDD0hEyoZj7mQ4vTvzvNzcoG4BhBpIrIJma-6g_YVRqXb6l3f2qjAvbN9fK_RVcEN3jZIVOz05ogtRnXno8JrE9A399W6A16Ss1pv0F397il5f3xYzZ_j5evTYl4sY8vSpI-zrKKgw7OcM6kFgHOG1VLznLGKSlGloK11icylMZzWRmib8ooBE8YaR9mU3Iy5e999Dg57te4GH_5ClUgWEkQKMlC3I9XojVNmwHbnMAi2zUePjR4QVZEJ4KEDgIDTEbe-Q_SuVnvfbrU_Kgrqp1o1Vqv-q2XfU6drTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931966409</pqid></control><display><type>article</type><title>Towards Semantic Aspect-Based Sentiment Analysis for Arabic Reviews</title><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Behdenna, Salima ; Barigou, Fatiha ; Belalem, Ghalem</creator><creatorcontrib>Behdenna, Salima ; Barigou, Fatiha ; Belalem, Ghalem</creatorcontrib><description>Sentiment analysis is a text mining discipline that aims to identify and extract subjective information. This growing field results in the emergence of three levels of granularity (document, sentence, and aspect). However, both the document and sentence levels do not find what exactly the opinion holder likes and dislikes. Furthermore, most research in this field deals with English texts, and very limited researches are undertaken on Arabic language. In this paper, the authors propose a semantic aspect-based sentiment analysis approach for Arabic reviews. This approach utilizes the semantic of description logics and linguistic rules in the identification of opinion targets and their polarity.</description><identifier>ISSN: 1935-5688</identifier><identifier>EISSN: 1935-5696</identifier><identifier>DOI: 10.4018/IJISSS.2020100101</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Analysis ; Arabic language ; Computer science ; Data mining ; Datasets ; Dictionaries ; Documents ; Information systems ; Linguistics ; Machine learning ; Ontology ; Semantics ; Sentences ; Sentiment analysis ; Social networks</subject><ispartof>International journal of information systems in the service sector, 2020-10, Vol.12 (4), p.1-13</ispartof><rights>COPYRIGHT 2020 IGI Global</rights><rights>Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-77d10a0185539a600eeb3f9a5833d196d40acce2989bb51fb6ac45d3036bcbe13</citedby><orcidid>0000-0002-9694-7586 ; 0000-0001-9872-2877 ; 0000-0001-5444-4000</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2931966409?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21393,27929,27930,33749,43810,64390,64394,72474</link.rule.ids></links><search><creatorcontrib>Behdenna, Salima</creatorcontrib><creatorcontrib>Barigou, Fatiha</creatorcontrib><creatorcontrib>Belalem, Ghalem</creatorcontrib><title>Towards Semantic Aspect-Based Sentiment Analysis for Arabic Reviews</title><title>International journal of information systems in the service sector</title><description>Sentiment analysis is a text mining discipline that aims to identify and extract subjective information. This growing field results in the emergence of three levels of granularity (document, sentence, and aspect). However, both the document and sentence levels do not find what exactly the opinion holder likes and dislikes. Furthermore, most research in this field deals with English texts, and very limited researches are undertaken on Arabic language. In this paper, the authors propose a semantic aspect-based sentiment analysis approach for Arabic reviews. This approach utilizes the semantic of description logics and linguistic rules in the identification of opinion targets and their polarity.</description><subject>Analysis</subject><subject>Arabic language</subject><subject>Computer science</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Dictionaries</subject><subject>Documents</subject><subject>Information systems</subject><subject>Linguistics</subject><subject>Machine learning</subject><subject>Ontology</subject><subject>Semantics</subject><subject>Sentences</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><issn>1935-5688</issn><issn>1935-5696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkF9LwzAUxYMoOKcfwLeCr3beNE3aPNbhn8lAsPM5JGlaO7Z15raOfXsjFYXLuZfDj8PlEHJNYZYCze8WL4uyLGcJJEAhDD0hEyoZj7mQ4vTvzvNzcoG4BhBpIrIJma-6g_YVRqXb6l3f2qjAvbN9fK_RVcEN3jZIVOz05ogtRnXno8JrE9A399W6A16Ss1pv0F397il5f3xYzZ_j5evTYl4sY8vSpI-zrKKgw7OcM6kFgHOG1VLznLGKSlGloK11icylMZzWRmib8ooBE8YaR9mU3Iy5e999Dg57te4GH_5ClUgWEkQKMlC3I9XojVNmwHbnMAi2zUePjR4QVZEJ4KEDgIDTEbe-Q_SuVnvfbrU_Kgrqp1o1Vqv-q2XfU6drTw</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Behdenna, Salima</creator><creator>Barigou, Fatiha</creator><creator>Belalem, Ghalem</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9694-7586</orcidid><orcidid>https://orcid.org/0000-0001-9872-2877</orcidid><orcidid>https://orcid.org/0000-0001-5444-4000</orcidid></search><sort><creationdate>20201001</creationdate><title>Towards Semantic Aspect-Based Sentiment Analysis for Arabic Reviews</title><author>Behdenna, Salima ; Barigou, Fatiha ; Belalem, Ghalem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-77d10a0185539a600eeb3f9a5833d196d40acce2989bb51fb6ac45d3036bcbe13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Arabic language</topic><topic>Computer science</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Dictionaries</topic><topic>Documents</topic><topic>Information systems</topic><topic>Linguistics</topic><topic>Machine learning</topic><topic>Ontology</topic><topic>Semantics</topic><topic>Sentences</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Behdenna, Salima</creatorcontrib><creatorcontrib>Barigou, Fatiha</creatorcontrib><creatorcontrib>Belalem, Ghalem</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of information systems in the service sector</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Behdenna, Salima</au><au>Barigou, Fatiha</au><au>Belalem, Ghalem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Semantic Aspect-Based Sentiment Analysis for Arabic Reviews</atitle><jtitle>International journal of information systems in the service sector</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>12</volume><issue>4</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1935-5688</issn><eissn>1935-5696</eissn><abstract>Sentiment analysis is a text mining discipline that aims to identify and extract subjective information. This growing field results in the emergence of three levels of granularity (document, sentence, and aspect). However, both the document and sentence levels do not find what exactly the opinion holder likes and dislikes. Furthermore, most research in this field deals with English texts, and very limited researches are undertaken on Arabic language. In this paper, the authors propose a semantic aspect-based sentiment analysis approach for Arabic reviews. This approach utilizes the semantic of description logics and linguistic rules in the identification of opinion targets and their polarity.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/IJISSS.2020100101</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9694-7586</orcidid><orcidid>https://orcid.org/0000-0001-9872-2877</orcidid><orcidid>https://orcid.org/0000-0001-5444-4000</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1935-5688
ispartof International journal of information systems in the service sector, 2020-10, Vol.12 (4), p.1-13
issn 1935-5688
1935-5696
language eng
recordid cdi_proquest_journals_2931966409
source ProQuest Central UK/Ireland; ProQuest Central
subjects Analysis
Arabic language
Computer science
Data mining
Datasets
Dictionaries
Documents
Information systems
Linguistics
Machine learning
Ontology
Semantics
Sentences
Sentiment analysis
Social networks
title Towards Semantic Aspect-Based Sentiment Analysis for Arabic Reviews
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A20%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Semantic%20Aspect-Based%20Sentiment%20Analysis%20for%20Arabic%20Reviews&rft.jtitle=International%20journal%20of%20information%20systems%20in%20the%20service%20sector&rft.au=Behdenna,%20Salima&rft.date=2020-10-01&rft.volume=12&rft.issue=4&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1935-5688&rft.eissn=1935-5696&rft_id=info:doi/10.4018/IJISSS.2020100101&rft_dat=%3Cgale_proqu%3EA760500600%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931966409&rft_id=info:pmid/&rft_galeid=A760500600&rfr_iscdi=true