Prediction of Breast Cancer Using Extremely Randomized Clustering Forests (ERCF) Technique: Prediction of Breast Cancer

Breast cancer is a significant public health concern in both developed and developing countries. It is almost one in three cancers diagnosed in all women. Data mining and pattern recognition applications in conjunction have been proven to be quite useful and relevant to extract the information usefu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of distributed systems and technologies 2021-10, Vol.12 (4), p.1-15
Hauptverfasser: Wairya, Subodh, Gupta, Akhil, Anand, Rohit, Pandey, Digvijay, Sindhwani, Nidhi, Pandey, Binay Kumar, Sharma, Manvinder
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 4
container_start_page 1
container_title International journal of distributed systems and technologies
container_volume 12
creator Wairya, Subodh
Gupta, Akhil
Anand, Rohit
Pandey, Digvijay
Sindhwani, Nidhi
Pandey, Binay Kumar
Sharma, Manvinder
description Breast cancer is a significant public health concern in both developed and developing countries. It is almost one in three cancers diagnosed in all women. Data mining and pattern recognition applications in conjunction have been proven to be quite useful and relevant to extract the information useful for the medical purpose. This research work reflects the work based on extremely randomized clustering forests (ERCF) technique which is nothing but a type of pattern recognition technique that may be implemented as the prediction model for breast cancer (BC). The accuracy achieved through ERCF has also been compared with that of k-NN (correlation) and k-NN (Euclidean) in this research work (where k-NN refers to k-nearest neighbours technique), and thereafter, final conclusions have been drawn depending upon the testing attributes. The results show that the accuracy of ERCF in the forecasting of breast cancer is so much larger than that of the exactness of k-NN (correlation) and k-NN (Euclidean). Hence, ERCF, a randomized technique for pattern classification, is best.
doi_str_mv 10.4018/IJDST.287859
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2931909333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760037815</galeid><sourcerecordid>A760037815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-4139daf4fdabc563acc4a28bd11f200a11c9c3158443f1e3980ecb6ecdbbef8a3</originalsourceid><addsrcrecordid>eNp9kUFP4zAQhSO0SCCWGz_AEheQtmDHThNz62bbXVAlELRny3HGqVEbsx5HC_z6DQQBh4o5zFjypzej95LkiNEzQVlxfnn1625xlhZ5kcmdZJ9JkY94Jui39zdP95JDxHvaVybyfCz3k383AWpnovMt8Zb8DKAxklK3BgJZomsbMn2MATawfiK3uq39xj1DTcp1hxHCy__MB8CI5GR6W85OyQLMqnV_O7ggX2h_T3atXiMcvs2DZDmbLso_o_n178tyMh8ZLrI4EozLWltha12ZbMy1MUKnRVUzZlNKNWNGGs6yQghuGXBZUDDVGExdVWALzQ-S40H3Ifj-Jozq3neh7VeqVHImqeR9vVONXoNyrfUxaLNxaNQkH1PK84JlPfXjE1V1vTuAfUPXrCI2ukPcipvgEQNY9RDcRocnxah6iUy9RqaGyHq8HHDXuI8jB_uUt2qwTw32qeU2DZby_8tBn6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931909333</pqid></control><display><type>article</type><title>Prediction of Breast Cancer Using Extremely Randomized Clustering Forests (ERCF) Technique: Prediction of Breast Cancer</title><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Wairya, Subodh ; Gupta, Akhil ; Anand, Rohit ; Pandey, Digvijay ; Sindhwani, Nidhi ; Pandey, Binay Kumar ; Sharma, Manvinder</creator><creatorcontrib>Wairya, Subodh ; Gupta, Akhil ; Anand, Rohit ; Pandey, Digvijay ; Sindhwani, Nidhi ; Pandey, Binay Kumar ; Sharma, Manvinder</creatorcontrib><description>Breast cancer is a significant public health concern in both developed and developing countries. It is almost one in three cancers diagnosed in all women. Data mining and pattern recognition applications in conjunction have been proven to be quite useful and relevant to extract the information useful for the medical purpose. This research work reflects the work based on extremely randomized clustering forests (ERCF) technique which is nothing but a type of pattern recognition technique that may be implemented as the prediction model for breast cancer (BC). The accuracy achieved through ERCF has also been compared with that of k-NN (correlation) and k-NN (Euclidean) in this research work (where k-NN refers to k-nearest neighbours technique), and thereafter, final conclusions have been drawn depending upon the testing attributes. The results show that the accuracy of ERCF in the forecasting of breast cancer is so much larger than that of the exactness of k-NN (correlation) and k-NN (Euclidean). Hence, ERCF, a randomized technique for pattern classification, is best.</description><identifier>ISSN: 1947-3532</identifier><identifier>EISSN: 1947-3540</identifier><identifier>DOI: 10.4018/IJDST.287859</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Accuracy ; Analysis ; Breast cancer ; Clustering ; Data mining ; Developing countries ; Forests and forestry ; India ; LDCs ; Methods ; Pattern classification ; Pattern recognition ; Prediction models ; Public health ; Technology application</subject><ispartof>International journal of distributed systems and technologies, 2021-10, Vol.12 (4), p.1-15</ispartof><rights>COPYRIGHT 2021 IGI Global</rights><rights>Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c345t-4139daf4fdabc563acc4a28bd11f200a11c9c3158443f1e3980ecb6ecdbbef8a3</cites><orcidid>0000-0002-4041-1213 ; 0000-0001-9158-0466 ; 0000-0003-0353-174X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2931909333?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,43805,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Wairya, Subodh</creatorcontrib><creatorcontrib>Gupta, Akhil</creatorcontrib><creatorcontrib>Anand, Rohit</creatorcontrib><creatorcontrib>Pandey, Digvijay</creatorcontrib><creatorcontrib>Sindhwani, Nidhi</creatorcontrib><creatorcontrib>Pandey, Binay Kumar</creatorcontrib><creatorcontrib>Sharma, Manvinder</creatorcontrib><title>Prediction of Breast Cancer Using Extremely Randomized Clustering Forests (ERCF) Technique: Prediction of Breast Cancer</title><title>International journal of distributed systems and technologies</title><description>Breast cancer is a significant public health concern in both developed and developing countries. It is almost one in three cancers diagnosed in all women. Data mining and pattern recognition applications in conjunction have been proven to be quite useful and relevant to extract the information useful for the medical purpose. This research work reflects the work based on extremely randomized clustering forests (ERCF) technique which is nothing but a type of pattern recognition technique that may be implemented as the prediction model for breast cancer (BC). The accuracy achieved through ERCF has also been compared with that of k-NN (correlation) and k-NN (Euclidean) in this research work (where k-NN refers to k-nearest neighbours technique), and thereafter, final conclusions have been drawn depending upon the testing attributes. The results show that the accuracy of ERCF in the forecasting of breast cancer is so much larger than that of the exactness of k-NN (correlation) and k-NN (Euclidean). Hence, ERCF, a randomized technique for pattern classification, is best.</description><subject>Accuracy</subject><subject>Analysis</subject><subject>Breast cancer</subject><subject>Clustering</subject><subject>Data mining</subject><subject>Developing countries</subject><subject>Forests and forestry</subject><subject>India</subject><subject>LDCs</subject><subject>Methods</subject><subject>Pattern classification</subject><subject>Pattern recognition</subject><subject>Prediction models</subject><subject>Public health</subject><subject>Technology application</subject><issn>1947-3532</issn><issn>1947-3540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUFP4zAQhSO0SCCWGz_AEheQtmDHThNz62bbXVAlELRny3HGqVEbsx5HC_z6DQQBh4o5zFjypzej95LkiNEzQVlxfnn1625xlhZ5kcmdZJ9JkY94Jui39zdP95JDxHvaVybyfCz3k383AWpnovMt8Zb8DKAxklK3BgJZomsbMn2MATawfiK3uq39xj1DTcp1hxHCy__MB8CI5GR6W85OyQLMqnV_O7ggX2h_T3atXiMcvs2DZDmbLso_o_n178tyMh8ZLrI4EozLWltha12ZbMy1MUKnRVUzZlNKNWNGGs6yQghuGXBZUDDVGExdVWALzQ-S40H3Ifj-Jozq3neh7VeqVHImqeR9vVONXoNyrfUxaLNxaNQkH1PK84JlPfXjE1V1vTuAfUPXrCI2ukPcipvgEQNY9RDcRocnxah6iUy9RqaGyHq8HHDXuI8jB_uUt2qwTw32qeU2DZby_8tBn6Q</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Wairya, Subodh</creator><creator>Gupta, Akhil</creator><creator>Anand, Rohit</creator><creator>Pandey, Digvijay</creator><creator>Sindhwani, Nidhi</creator><creator>Pandey, Binay Kumar</creator><creator>Sharma, Manvinder</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-4041-1213</orcidid><orcidid>https://orcid.org/0000-0001-9158-0466</orcidid><orcidid>https://orcid.org/0000-0003-0353-174X</orcidid></search><sort><creationdate>20211001</creationdate><title>Prediction of Breast Cancer Using Extremely Randomized Clustering Forests (ERCF) Technique: Prediction of Breast Cancer</title><author>Wairya, Subodh ; Gupta, Akhil ; Anand, Rohit ; Pandey, Digvijay ; Sindhwani, Nidhi ; Pandey, Binay Kumar ; Sharma, Manvinder</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-4139daf4fdabc563acc4a28bd11f200a11c9c3158443f1e3980ecb6ecdbbef8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Analysis</topic><topic>Breast cancer</topic><topic>Clustering</topic><topic>Data mining</topic><topic>Developing countries</topic><topic>Forests and forestry</topic><topic>India</topic><topic>LDCs</topic><topic>Methods</topic><topic>Pattern classification</topic><topic>Pattern recognition</topic><topic>Prediction models</topic><topic>Public health</topic><topic>Technology application</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wairya, Subodh</creatorcontrib><creatorcontrib>Gupta, Akhil</creatorcontrib><creatorcontrib>Anand, Rohit</creatorcontrib><creatorcontrib>Pandey, Digvijay</creatorcontrib><creatorcontrib>Sindhwani, Nidhi</creatorcontrib><creatorcontrib>Pandey, Binay Kumar</creatorcontrib><creatorcontrib>Sharma, Manvinder</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of distributed systems and technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wairya, Subodh</au><au>Gupta, Akhil</au><au>Anand, Rohit</au><au>Pandey, Digvijay</au><au>Sindhwani, Nidhi</au><au>Pandey, Binay Kumar</au><au>Sharma, Manvinder</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Breast Cancer Using Extremely Randomized Clustering Forests (ERCF) Technique: Prediction of Breast Cancer</atitle><jtitle>International journal of distributed systems and technologies</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>12</volume><issue>4</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1947-3532</issn><eissn>1947-3540</eissn><abstract>Breast cancer is a significant public health concern in both developed and developing countries. It is almost one in three cancers diagnosed in all women. Data mining and pattern recognition applications in conjunction have been proven to be quite useful and relevant to extract the information useful for the medical purpose. This research work reflects the work based on extremely randomized clustering forests (ERCF) technique which is nothing but a type of pattern recognition technique that may be implemented as the prediction model for breast cancer (BC). The accuracy achieved through ERCF has also been compared with that of k-NN (correlation) and k-NN (Euclidean) in this research work (where k-NN refers to k-nearest neighbours technique), and thereafter, final conclusions have been drawn depending upon the testing attributes. The results show that the accuracy of ERCF in the forecasting of breast cancer is so much larger than that of the exactness of k-NN (correlation) and k-NN (Euclidean). Hence, ERCF, a randomized technique for pattern classification, is best.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/IJDST.287859</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4041-1213</orcidid><orcidid>https://orcid.org/0000-0001-9158-0466</orcidid><orcidid>https://orcid.org/0000-0003-0353-174X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1947-3532
ispartof International journal of distributed systems and technologies, 2021-10, Vol.12 (4), p.1-15
issn 1947-3532
1947-3540
language eng
recordid cdi_proquest_journals_2931909333
source ProQuest Central UK/Ireland; ProQuest Central
subjects Accuracy
Analysis
Breast cancer
Clustering
Data mining
Developing countries
Forests and forestry
India
LDCs
Methods
Pattern classification
Pattern recognition
Prediction models
Public health
Technology application
title Prediction of Breast Cancer Using Extremely Randomized Clustering Forests (ERCF) Technique: Prediction of Breast Cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T02%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Breast%20Cancer%20Using%20Extremely%20Randomized%20Clustering%20Forests%20(ERCF)%20Technique:%20Prediction%20of%20Breast%20Cancer&rft.jtitle=International%20journal%20of%20distributed%20systems%20and%20technologies&rft.au=Wairya,%20Subodh&rft.date=2021-10-01&rft.volume=12&rft.issue=4&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1947-3532&rft.eissn=1947-3540&rft_id=info:doi/10.4018/IJDST.287859&rft_dat=%3Cgale_proqu%3EA760037815%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931909333&rft_id=info:pmid/&rft_galeid=A760037815&rfr_iscdi=true