An efficient cloud based face recognition system for e-health secured login using steerable pyramid transform and local directional pattern
This paper proposes a face recognition system based on steerable pyramid transform (SPT) and local directional pattern (LDP) for e-health secured login in cloud domain. In an e-health login, patients periodically forget their self-made login username and password. This face recognition system can re...
Gespeichert in:
Veröffentlicht in: | Journal of ambient intelligence and humanized computing 2024, Vol.15 (1), p.1017-1027 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1027 |
---|---|
container_issue | 1 |
container_start_page | 1017 |
container_title | Journal of ambient intelligence and humanized computing |
container_volume | 15 |
creator | Dosaj, Ayush Satapathy, Suresh Chandra Soundrapandiyan, Rajkumar Kaur, Mannat Hannoon, Naeem |
description | This paper proposes a face recognition system based on steerable pyramid transform (SPT) and local directional pattern (LDP) for e-health secured login in cloud domain. In an e-health login, patients periodically forget their self-made login username and password. This face recognition system can replace the traditional login system. In the proposed system, SPT can decompose a face image into several sub-bands of different scales and orientations, and LDP can encode the sub-bands in binary texture pattern. The LDP binary pattern was obtained by computing the edge response values in all eight directions at each pixel position and generating a code from the relative strength magnitude. Therefore, SPT–LDP design represents a face image in a robust way which includes multiple information sources from different scales and orientations. The proposed system is tested on standard benchmark facial recognition technology (FERET) and extended Yale-B databases. Further, the efficiency of the proposed system is proved by comparing recognition rates with other existing descriptor based methods. From the experimental results it is observed that the proposed system achieves 99.79% recognition in fb set, 90.72% in fc set, 84.97% in dup I set, and 87.69% in dup II set for FERET database and 100% in sub2 set, 100% in sub3 set, 96% in sub4 set and 95% in sub5 set for extended Yale-B database which is better than the existing methods. |
doi_str_mv | 10.1007/s12652-018-1115-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2931889809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931889809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2316-1a656c8d296cd495f970c4b043931209bf415a87410fba56a8dfa2a251497ecb3</originalsourceid><addsrcrecordid>eNp1kL1OwzAURiMEElXpA7BZYg7YTuI4Y1XxJ1Vigdm6ca5TV4kT7GToM_DSOCqCibv4Duc7uv6S5JbRe0Zp-RAYFwVPKZMpY6xIxUWyYlLItGB5cfm7Z-V1sgnhSONkVRbRVfK1dQSNsdqim4juhrkhNQRsiAGNxKMeWmcnOzgSTmHCnpjBE0wPCN10IAH17CPcDa11ZA7WtSRS6KHukIwnD71tyOTBhZjrCbiF1dCRxkb34o37CNOE3t0kVwa6gJufd518PD2-717S_dvz6267TzXPmEgZiEJo2fBK6CavClOVVOc1zZc_cVrVJmcFyDJn1NRQCJCNAQ48llGVqOtsndydvaMfPmcMkzoOs4-HBMWjQspK0ipS7ExpP4Tg0ajR2x78STGqltrVuXYVa1dL7UrEDD9nQmRdi_7P_H_oG4O4ht8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931889809</pqid></control><display><type>article</type><title>An efficient cloud based face recognition system for e-health secured login using steerable pyramid transform and local directional pattern</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Dosaj, Ayush ; Satapathy, Suresh Chandra ; Soundrapandiyan, Rajkumar ; Kaur, Mannat ; Hannoon, Naeem</creator><creatorcontrib>Dosaj, Ayush ; Satapathy, Suresh Chandra ; Soundrapandiyan, Rajkumar ; Kaur, Mannat ; Hannoon, Naeem</creatorcontrib><description>This paper proposes a face recognition system based on steerable pyramid transform (SPT) and local directional pattern (LDP) for e-health secured login in cloud domain. In an e-health login, patients periodically forget their self-made login username and password. This face recognition system can replace the traditional login system. In the proposed system, SPT can decompose a face image into several sub-bands of different scales and orientations, and LDP can encode the sub-bands in binary texture pattern. The LDP binary pattern was obtained by computing the edge response values in all eight directions at each pixel position and generating a code from the relative strength magnitude. Therefore, SPT–LDP design represents a face image in a robust way which includes multiple information sources from different scales and orientations. The proposed system is tested on standard benchmark facial recognition technology (FERET) and extended Yale-B databases. Further, the efficiency of the proposed system is proved by comparing recognition rates with other existing descriptor based methods. From the experimental results it is observed that the proposed system achieves 99.79% recognition in fb set, 90.72% in fc set, 84.97% in dup I set, and 87.69% in dup II set for FERET database and 100% in sub2 set, 100% in sub3 set, 96% in sub4 set and 95% in sub5 set for extended Yale-B database which is better than the existing methods.</description><identifier>ISSN: 1868-5137</identifier><identifier>EISSN: 1868-5145</identifier><identifier>DOI: 10.1007/s12652-018-1115-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Access control ; Artificial Intelligence ; Cameras ; Classification ; Cloud computing ; Computational Intelligence ; Decomposition ; Discriminant analysis ; Engineering ; Face recognition ; Fourier transforms ; Information sources ; Medical research ; Original Research ; Random variables ; Robotics and Automation ; User Interfaces and Human Computer Interaction</subject><ispartof>Journal of ambient intelligence and humanized computing, 2024, Vol.15 (1), p.1017-1027</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2316-1a656c8d296cd495f970c4b043931209bf415a87410fba56a8dfa2a251497ecb3</citedby><cites>FETCH-LOGICAL-c2316-1a656c8d296cd495f970c4b043931209bf415a87410fba56a8dfa2a251497ecb3</cites><orcidid>0000-0001-5701-9325</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12652-018-1115-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2931889809?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Dosaj, Ayush</creatorcontrib><creatorcontrib>Satapathy, Suresh Chandra</creatorcontrib><creatorcontrib>Soundrapandiyan, Rajkumar</creatorcontrib><creatorcontrib>Kaur, Mannat</creatorcontrib><creatorcontrib>Hannoon, Naeem</creatorcontrib><title>An efficient cloud based face recognition system for e-health secured login using steerable pyramid transform and local directional pattern</title><title>Journal of ambient intelligence and humanized computing</title><addtitle>J Ambient Intell Human Comput</addtitle><description>This paper proposes a face recognition system based on steerable pyramid transform (SPT) and local directional pattern (LDP) for e-health secured login in cloud domain. In an e-health login, patients periodically forget their self-made login username and password. This face recognition system can replace the traditional login system. In the proposed system, SPT can decompose a face image into several sub-bands of different scales and orientations, and LDP can encode the sub-bands in binary texture pattern. The LDP binary pattern was obtained by computing the edge response values in all eight directions at each pixel position and generating a code from the relative strength magnitude. Therefore, SPT–LDP design represents a face image in a robust way which includes multiple information sources from different scales and orientations. The proposed system is tested on standard benchmark facial recognition technology (FERET) and extended Yale-B databases. Further, the efficiency of the proposed system is proved by comparing recognition rates with other existing descriptor based methods. From the experimental results it is observed that the proposed system achieves 99.79% recognition in fb set, 90.72% in fc set, 84.97% in dup I set, and 87.69% in dup II set for FERET database and 100% in sub2 set, 100% in sub3 set, 96% in sub4 set and 95% in sub5 set for extended Yale-B database which is better than the existing methods.</description><subject>Access control</subject><subject>Artificial Intelligence</subject><subject>Cameras</subject><subject>Classification</subject><subject>Cloud computing</subject><subject>Computational Intelligence</subject><subject>Decomposition</subject><subject>Discriminant analysis</subject><subject>Engineering</subject><subject>Face recognition</subject><subject>Fourier transforms</subject><subject>Information sources</subject><subject>Medical research</subject><subject>Original Research</subject><subject>Random variables</subject><subject>Robotics and Automation</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>1868-5137</issn><issn>1868-5145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kL1OwzAURiMEElXpA7BZYg7YTuI4Y1XxJ1Vigdm6ca5TV4kT7GToM_DSOCqCibv4Duc7uv6S5JbRe0Zp-RAYFwVPKZMpY6xIxUWyYlLItGB5cfm7Z-V1sgnhSONkVRbRVfK1dQSNsdqim4juhrkhNQRsiAGNxKMeWmcnOzgSTmHCnpjBE0wPCN10IAH17CPcDa11ZA7WtSRS6KHukIwnD71tyOTBhZjrCbiF1dCRxkb34o37CNOE3t0kVwa6gJufd518PD2-717S_dvz6267TzXPmEgZiEJo2fBK6CavClOVVOc1zZc_cVrVJmcFyDJn1NRQCJCNAQ48llGVqOtsndydvaMfPmcMkzoOs4-HBMWjQspK0ipS7ExpP4Tg0ajR2x78STGqltrVuXYVa1dL7UrEDD9nQmRdi_7P_H_oG4O4ht8</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Dosaj, Ayush</creator><creator>Satapathy, Suresh Chandra</creator><creator>Soundrapandiyan, Rajkumar</creator><creator>Kaur, Mannat</creator><creator>Hannoon, Naeem</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-5701-9325</orcidid></search><sort><creationdate>2024</creationdate><title>An efficient cloud based face recognition system for e-health secured login using steerable pyramid transform and local directional pattern</title><author>Dosaj, Ayush ; Satapathy, Suresh Chandra ; Soundrapandiyan, Rajkumar ; Kaur, Mannat ; Hannoon, Naeem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2316-1a656c8d296cd495f970c4b043931209bf415a87410fba56a8dfa2a251497ecb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Access control</topic><topic>Artificial Intelligence</topic><topic>Cameras</topic><topic>Classification</topic><topic>Cloud computing</topic><topic>Computational Intelligence</topic><topic>Decomposition</topic><topic>Discriminant analysis</topic><topic>Engineering</topic><topic>Face recognition</topic><topic>Fourier transforms</topic><topic>Information sources</topic><topic>Medical research</topic><topic>Original Research</topic><topic>Random variables</topic><topic>Robotics and Automation</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dosaj, Ayush</creatorcontrib><creatorcontrib>Satapathy, Suresh Chandra</creatorcontrib><creatorcontrib>Soundrapandiyan, Rajkumar</creatorcontrib><creatorcontrib>Kaur, Mannat</creatorcontrib><creatorcontrib>Hannoon, Naeem</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of ambient intelligence and humanized computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dosaj, Ayush</au><au>Satapathy, Suresh Chandra</au><au>Soundrapandiyan, Rajkumar</au><au>Kaur, Mannat</au><au>Hannoon, Naeem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient cloud based face recognition system for e-health secured login using steerable pyramid transform and local directional pattern</atitle><jtitle>Journal of ambient intelligence and humanized computing</jtitle><stitle>J Ambient Intell Human Comput</stitle><date>2024</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>1017</spage><epage>1027</epage><pages>1017-1027</pages><issn>1868-5137</issn><eissn>1868-5145</eissn><abstract>This paper proposes a face recognition system based on steerable pyramid transform (SPT) and local directional pattern (LDP) for e-health secured login in cloud domain. In an e-health login, patients periodically forget their self-made login username and password. This face recognition system can replace the traditional login system. In the proposed system, SPT can decompose a face image into several sub-bands of different scales and orientations, and LDP can encode the sub-bands in binary texture pattern. The LDP binary pattern was obtained by computing the edge response values in all eight directions at each pixel position and generating a code from the relative strength magnitude. Therefore, SPT–LDP design represents a face image in a robust way which includes multiple information sources from different scales and orientations. The proposed system is tested on standard benchmark facial recognition technology (FERET) and extended Yale-B databases. Further, the efficiency of the proposed system is proved by comparing recognition rates with other existing descriptor based methods. From the experimental results it is observed that the proposed system achieves 99.79% recognition in fb set, 90.72% in fc set, 84.97% in dup I set, and 87.69% in dup II set for FERET database and 100% in sub2 set, 100% in sub3 set, 96% in sub4 set and 95% in sub5 set for extended Yale-B database which is better than the existing methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12652-018-1115-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5701-9325</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-5137 |
ispartof | Journal of ambient intelligence and humanized computing, 2024, Vol.15 (1), p.1017-1027 |
issn | 1868-5137 1868-5145 |
language | eng |
recordid | cdi_proquest_journals_2931889809 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Access control Artificial Intelligence Cameras Classification Cloud computing Computational Intelligence Decomposition Discriminant analysis Engineering Face recognition Fourier transforms Information sources Medical research Original Research Random variables Robotics and Automation User Interfaces and Human Computer Interaction |
title | An efficient cloud based face recognition system for e-health secured login using steerable pyramid transform and local directional pattern |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20cloud%20based%20face%20recognition%20system%20for%20e-health%20secured%20login%20using%20steerable%20pyramid%20transform%20and%20local%20directional%20pattern&rft.jtitle=Journal%20of%20ambient%20intelligence%20and%20humanized%20computing&rft.au=Dosaj,%20Ayush&rft.date=2024&rft.volume=15&rft.issue=1&rft.spage=1017&rft.epage=1027&rft.pages=1017-1027&rft.issn=1868-5137&rft.eissn=1868-5145&rft_id=info:doi/10.1007/s12652-018-1115-6&rft_dat=%3Cproquest_cross%3E2931889809%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931889809&rft_id=info:pmid/&rfr_iscdi=true |