Nano SiC-Reinforced AA7178 Matrix Alloy: Corrosion Behavior and Characterization

The primary objective of this study was to assess the impact of incorporating SiC on both the microstructure and corrosion characteristics of nanocomposites based on the AA7178 matrix alloy. The fabrication of AA7178 alloy reinforced with SiC composites was achieved through a stir-casting technique,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SILICON 2024-02, Vol.16 (4), p.1627-1634
Hauptverfasser: Bharat, Nikhil, Bose, P. S. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1634
container_issue 4
container_start_page 1627
container_title SILICON
container_volume 16
creator Bharat, Nikhil
Bose, P. S. C.
description The primary objective of this study was to assess the impact of incorporating SiC on both the microstructure and corrosion characteristics of nanocomposites based on the AA7178 matrix alloy. The fabrication of AA7178 alloy reinforced with SiC composites was achieved through a stir-casting technique, with SiC reinforcement levels varying from 0 to 3 wt.% in 1% increments. Scanning electron microscopy analysis indicated a consistent distribution of SiC nanoparticles throughout the aluminum matrix. To evaluate the electrochemical behavior, investigations were conducted employing open-circuit potential (OCP), potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) in a 3.5% sodium chloride solution. The findings from the polarization and EIS analyses demonstrated that the corrosion resistance of the nanocomposites exceeded that of the base matrix alloy. This improvement in corrosion resistance was attributed to the electrochemical decoupling observed between SiC particles and the AA7178 matrix alloy. Notably, the nanocomposite with a SiC content of 3 wt.% (AA7178/3wt.% SiC) exhibited the most significant corrosion resistance, characterized by optimal values for current density corrosion (0.03443 mA/cm 2 ) and potential corrosion (-0.15144 V). Furthermore, examination with scanning electron microscopy (SEM) indicated that pitting and cracks were the primary mechanisms contributing to corrosion in these materials.
doi_str_mv 10.1007/s12633-023-02785-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2931864151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931864151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4c56831b7caacaf39fee7c217e0d597faf1ee61155db430c11e5912a18841c253</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKeA59XMZrNJvK2LVqF-4Ad4C2k2a7fUTU221vrrTV3RmwPDDMz7zgwPQodAjoEQfhIgzSlNSLpNLliy3kEDEDxPpASx-9uT5300CmFOYtAozOUA3d3o1uGHpkzubdPWzhtb4aLgwAW-1p1vPnCxWLjNKS6d9y40rsVndqbfG-exbitczrTXprO--dRdnB6gvVovgh391CF6ujh_LC-Tye34qiwmiaEguyQzLBcUptxobXRNZW0tNylwSyomea1rsDYHYKyaZpQYAMskpBqEyMCkjA7RUb936d3byoZOzd3Kt_GkSiUFkWfAIKrSXmXi78HbWi1986r9RgFRW3iqh6ciPPUNT62jifamEMXti_V_q_9xfQER9nEu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931864151</pqid></control><display><type>article</type><title>Nano SiC-Reinforced AA7178 Matrix Alloy: Corrosion Behavior and Characterization</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Bharat, Nikhil ; Bose, P. S. C.</creator><creatorcontrib>Bharat, Nikhil ; Bose, P. S. C.</creatorcontrib><description>The primary objective of this study was to assess the impact of incorporating SiC on both the microstructure and corrosion characteristics of nanocomposites based on the AA7178 matrix alloy. The fabrication of AA7178 alloy reinforced with SiC composites was achieved through a stir-casting technique, with SiC reinforcement levels varying from 0 to 3 wt.% in 1% increments. Scanning electron microscopy analysis indicated a consistent distribution of SiC nanoparticles throughout the aluminum matrix. To evaluate the electrochemical behavior, investigations were conducted employing open-circuit potential (OCP), potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) in a 3.5% sodium chloride solution. The findings from the polarization and EIS analyses demonstrated that the corrosion resistance of the nanocomposites exceeded that of the base matrix alloy. This improvement in corrosion resistance was attributed to the electrochemical decoupling observed between SiC particles and the AA7178 matrix alloy. Notably, the nanocomposite with a SiC content of 3 wt.% (AA7178/3wt.% SiC) exhibited the most significant corrosion resistance, characterized by optimal values for current density corrosion (0.03443 mA/cm 2 ) and potential corrosion (-0.15144 V). Furthermore, examination with scanning electron microscopy (SEM) indicated that pitting and cracks were the primary mechanisms contributing to corrosion in these materials.</description><identifier>ISSN: 1876-990X</identifier><identifier>EISSN: 1876-9918</identifier><identifier>DOI: 10.1007/s12633-023-02785-w</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aluminum base alloys ; Chemistry ; Chemistry and Materials Science ; Corrosion potential ; Corrosion resistance ; Corrosion resistant alloys ; Decoupling ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrode polarization ; Environmental Chemistry ; Inorganic Chemistry ; Lasers ; Materials Science ; Nanocomposites ; Open circuit voltage ; Optical Devices ; Optics ; Photonics ; Pitting (corrosion) ; Polymer Sciences ; Scanning electron microscopy ; Silicon carbide ; Sodium chloride</subject><ispartof>SILICON, 2024-02, Vol.16 (4), p.1627-1634</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4c56831b7caacaf39fee7c217e0d597faf1ee61155db430c11e5912a18841c253</citedby><cites>FETCH-LOGICAL-c319t-4c56831b7caacaf39fee7c217e0d597faf1ee61155db430c11e5912a18841c253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12633-023-02785-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2931864151?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Bharat, Nikhil</creatorcontrib><creatorcontrib>Bose, P. S. C.</creatorcontrib><title>Nano SiC-Reinforced AA7178 Matrix Alloy: Corrosion Behavior and Characterization</title><title>SILICON</title><addtitle>Silicon</addtitle><description>The primary objective of this study was to assess the impact of incorporating SiC on both the microstructure and corrosion characteristics of nanocomposites based on the AA7178 matrix alloy. The fabrication of AA7178 alloy reinforced with SiC composites was achieved through a stir-casting technique, with SiC reinforcement levels varying from 0 to 3 wt.% in 1% increments. Scanning electron microscopy analysis indicated a consistent distribution of SiC nanoparticles throughout the aluminum matrix. To evaluate the electrochemical behavior, investigations were conducted employing open-circuit potential (OCP), potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) in a 3.5% sodium chloride solution. The findings from the polarization and EIS analyses demonstrated that the corrosion resistance of the nanocomposites exceeded that of the base matrix alloy. This improvement in corrosion resistance was attributed to the electrochemical decoupling observed between SiC particles and the AA7178 matrix alloy. Notably, the nanocomposite with a SiC content of 3 wt.% (AA7178/3wt.% SiC) exhibited the most significant corrosion resistance, characterized by optimal values for current density corrosion (0.03443 mA/cm 2 ) and potential corrosion (-0.15144 V). Furthermore, examination with scanning electron microscopy (SEM) indicated that pitting and cracks were the primary mechanisms contributing to corrosion in these materials.</description><subject>Aluminum base alloys</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion potential</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant alloys</subject><subject>Decoupling</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrode polarization</subject><subject>Environmental Chemistry</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Nanocomposites</subject><subject>Open circuit voltage</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Pitting (corrosion)</subject><subject>Polymer Sciences</subject><subject>Scanning electron microscopy</subject><subject>Silicon carbide</subject><subject>Sodium chloride</subject><issn>1876-990X</issn><issn>1876-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMoWGr_gKeA59XMZrNJvK2LVqF-4Ad4C2k2a7fUTU221vrrTV3RmwPDDMz7zgwPQodAjoEQfhIgzSlNSLpNLliy3kEDEDxPpASx-9uT5300CmFOYtAozOUA3d3o1uGHpkzubdPWzhtb4aLgwAW-1p1vPnCxWLjNKS6d9y40rsVndqbfG-exbitczrTXprO--dRdnB6gvVovgh391CF6ujh_LC-Tye34qiwmiaEguyQzLBcUptxobXRNZW0tNylwSyomea1rsDYHYKyaZpQYAMskpBqEyMCkjA7RUb936d3byoZOzd3Kt_GkSiUFkWfAIKrSXmXi78HbWi1986r9RgFRW3iqh6ciPPUNT62jifamEMXti_V_q_9xfQER9nEu</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Bharat, Nikhil</creator><creator>Bose, P. S. C.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20240201</creationdate><title>Nano SiC-Reinforced AA7178 Matrix Alloy: Corrosion Behavior and Characterization</title><author>Bharat, Nikhil ; Bose, P. S. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4c56831b7caacaf39fee7c217e0d597faf1ee61155db430c11e5912a18841c253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum base alloys</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion potential</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant alloys</topic><topic>Decoupling</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrode polarization</topic><topic>Environmental Chemistry</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Nanocomposites</topic><topic>Open circuit voltage</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Pitting (corrosion)</topic><topic>Polymer Sciences</topic><topic>Scanning electron microscopy</topic><topic>Silicon carbide</topic><topic>Sodium chloride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bharat, Nikhil</creatorcontrib><creatorcontrib>Bose, P. S. C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SILICON</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bharat, Nikhil</au><au>Bose, P. S. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano SiC-Reinforced AA7178 Matrix Alloy: Corrosion Behavior and Characterization</atitle><jtitle>SILICON</jtitle><stitle>Silicon</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>16</volume><issue>4</issue><spage>1627</spage><epage>1634</epage><pages>1627-1634</pages><issn>1876-990X</issn><eissn>1876-9918</eissn><abstract>The primary objective of this study was to assess the impact of incorporating SiC on both the microstructure and corrosion characteristics of nanocomposites based on the AA7178 matrix alloy. The fabrication of AA7178 alloy reinforced with SiC composites was achieved through a stir-casting technique, with SiC reinforcement levels varying from 0 to 3 wt.% in 1% increments. Scanning electron microscopy analysis indicated a consistent distribution of SiC nanoparticles throughout the aluminum matrix. To evaluate the electrochemical behavior, investigations were conducted employing open-circuit potential (OCP), potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) in a 3.5% sodium chloride solution. The findings from the polarization and EIS analyses demonstrated that the corrosion resistance of the nanocomposites exceeded that of the base matrix alloy. This improvement in corrosion resistance was attributed to the electrochemical decoupling observed between SiC particles and the AA7178 matrix alloy. Notably, the nanocomposite with a SiC content of 3 wt.% (AA7178/3wt.% SiC) exhibited the most significant corrosion resistance, characterized by optimal values for current density corrosion (0.03443 mA/cm 2 ) and potential corrosion (-0.15144 V). Furthermore, examination with scanning electron microscopy (SEM) indicated that pitting and cracks were the primary mechanisms contributing to corrosion in these materials.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12633-023-02785-w</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1876-990X
ispartof SILICON, 2024-02, Vol.16 (4), p.1627-1634
issn 1876-990X
1876-9918
language eng
recordid cdi_proquest_journals_2931864151
source SpringerLink Journals; ProQuest Central
subjects Aluminum base alloys
Chemistry
Chemistry and Materials Science
Corrosion potential
Corrosion resistance
Corrosion resistant alloys
Decoupling
Electrochemical analysis
Electrochemical impedance spectroscopy
Electrode polarization
Environmental Chemistry
Inorganic Chemistry
Lasers
Materials Science
Nanocomposites
Open circuit voltage
Optical Devices
Optics
Photonics
Pitting (corrosion)
Polymer Sciences
Scanning electron microscopy
Silicon carbide
Sodium chloride
title Nano SiC-Reinforced AA7178 Matrix Alloy: Corrosion Behavior and Characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T08%3A15%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano%20SiC-Reinforced%20AA7178%20Matrix%20Alloy:%20Corrosion%20Behavior%20and%20Characterization&rft.jtitle=SILICON&rft.au=Bharat,%20Nikhil&rft.date=2024-02-01&rft.volume=16&rft.issue=4&rft.spage=1627&rft.epage=1634&rft.pages=1627-1634&rft.issn=1876-990X&rft.eissn=1876-9918&rft_id=info:doi/10.1007/s12633-023-02785-w&rft_dat=%3Cproquest_cross%3E2931864151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931864151&rft_id=info:pmid/&rfr_iscdi=true