The Impact of LoRA on the Emergence of Clusters in Transformers
In this paper, we employ the mathematical framework on Transformers developed by \citet{sander2022sinkformers,geshkovski2023emergence,geshkovski2023mathematical} to explore how variations in attention parameters and initial token values impact the structural dynamics of token clusters. Our analysis...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Koubbi, Hugo Boussard, Matthieu Hernandez, Louis |
description | In this paper, we employ the mathematical framework on Transformers developed by \citet{sander2022sinkformers,geshkovski2023emergence,geshkovski2023mathematical} to explore how variations in attention parameters and initial token values impact the structural dynamics of token clusters. Our analysis demonstrates that while the clusters within a modified attention matrix dynamics can exhibit significant divergence from the original over extended periods, they maintain close similarities over shorter intervals, depending on the parameter differences. This work contributes to the fine-tuning field through practical applications to the LoRA algorithm \cite{hu2021lora,peft}, enhancing our understanding of the behavior of LoRA-enhanced Transformer models. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2931849918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931849918</sourcerecordid><originalsourceid>FETCH-proquest_journals_29318499183</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwD8lIVfDMLUhMLlHIT1PwyQ9yVMjPUygBirrmphalp-Ylp4IknHNKi0tSi4oVMvMUQooS84rT8ouA8sU8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGlsaGFiaWloYUycKgBhRDfC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931849918</pqid></control><display><type>article</type><title>The Impact of LoRA on the Emergence of Clusters in Transformers</title><source>Free E- Journals</source><creator>Koubbi, Hugo ; Boussard, Matthieu ; Hernandez, Louis</creator><creatorcontrib>Koubbi, Hugo ; Boussard, Matthieu ; Hernandez, Louis</creatorcontrib><description>In this paper, we employ the mathematical framework on Transformers developed by \citet{sander2022sinkformers,geshkovski2023emergence,geshkovski2023mathematical} to explore how variations in attention parameters and initial token values impact the structural dynamics of token clusters. Our analysis demonstrates that while the clusters within a modified attention matrix dynamics can exhibit significant divergence from the original over extended periods, they maintain close similarities over shorter intervals, depending on the parameter differences. This work contributes to the fine-tuning field through practical applications to the LoRA algorithm \cite{hu2021lora,peft}, enhancing our understanding of the behavior of LoRA-enhanced Transformer models.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Cluster analysis ; Dynamic structural analysis ; Parameters ; Transformers</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Koubbi, Hugo</creatorcontrib><creatorcontrib>Boussard, Matthieu</creatorcontrib><creatorcontrib>Hernandez, Louis</creatorcontrib><title>The Impact of LoRA on the Emergence of Clusters in Transformers</title><title>arXiv.org</title><description>In this paper, we employ the mathematical framework on Transformers developed by \citet{sander2022sinkformers,geshkovski2023emergence,geshkovski2023mathematical} to explore how variations in attention parameters and initial token values impact the structural dynamics of token clusters. Our analysis demonstrates that while the clusters within a modified attention matrix dynamics can exhibit significant divergence from the original over extended periods, they maintain close similarities over shorter intervals, depending on the parameter differences. This work contributes to the fine-tuning field through practical applications to the LoRA algorithm \cite{hu2021lora,peft}, enhancing our understanding of the behavior of LoRA-enhanced Transformer models.</description><subject>Algorithms</subject><subject>Cluster analysis</subject><subject>Dynamic structural analysis</subject><subject>Parameters</subject><subject>Transformers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwD8lIVfDMLUhMLlHIT1PwyQ9yVMjPUygBirrmphalp-Ylp4IknHNKi0tSi4oVMvMUQooS84rT8ouA8sU8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGlsaGFiaWloYUycKgBhRDfC</recordid><startdate>20240223</startdate><enddate>20240223</enddate><creator>Koubbi, Hugo</creator><creator>Boussard, Matthieu</creator><creator>Hernandez, Louis</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240223</creationdate><title>The Impact of LoRA on the Emergence of Clusters in Transformers</title><author>Koubbi, Hugo ; Boussard, Matthieu ; Hernandez, Louis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29318499183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Cluster analysis</topic><topic>Dynamic structural analysis</topic><topic>Parameters</topic><topic>Transformers</topic><toplevel>online_resources</toplevel><creatorcontrib>Koubbi, Hugo</creatorcontrib><creatorcontrib>Boussard, Matthieu</creatorcontrib><creatorcontrib>Hernandez, Louis</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koubbi, Hugo</au><au>Boussard, Matthieu</au><au>Hernandez, Louis</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Impact of LoRA on the Emergence of Clusters in Transformers</atitle><jtitle>arXiv.org</jtitle><date>2024-02-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this paper, we employ the mathematical framework on Transformers developed by \citet{sander2022sinkformers,geshkovski2023emergence,geshkovski2023mathematical} to explore how variations in attention parameters and initial token values impact the structural dynamics of token clusters. Our analysis demonstrates that while the clusters within a modified attention matrix dynamics can exhibit significant divergence from the original over extended periods, they maintain close similarities over shorter intervals, depending on the parameter differences. This work contributes to the fine-tuning field through practical applications to the LoRA algorithm \cite{hu2021lora,peft}, enhancing our understanding of the behavior of LoRA-enhanced Transformer models.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2931849918 |
source | Free E- Journals |
subjects | Algorithms Cluster analysis Dynamic structural analysis Parameters Transformers |
title | The Impact of LoRA on the Emergence of Clusters in Transformers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A18%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Impact%20of%20LoRA%20on%20the%20Emergence%20of%20Clusters%20in%20Transformers&rft.jtitle=arXiv.org&rft.au=Koubbi,%20Hugo&rft.date=2024-02-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2931849918%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931849918&rft_id=info:pmid/&rfr_iscdi=true |