Self-Adaptive Reconstruction with Contrastive Learning for Unsupervised Sentence Embeddings
Unsupervised sentence embeddings task aims to convert sentences to semantic vector representations. Most previous works directly use the sentence representations derived from pretrained language models. However, due to the token bias in pretrained language models, the models can not capture the fine...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Liu, Junlong Shang, Xichen Feng, Huawen Zheng, Junhao Ma, Qianli |
description | Unsupervised sentence embeddings task aims to convert sentences to semantic vector representations. Most previous works directly use the sentence representations derived from pretrained language models. However, due to the token bias in pretrained language models, the models can not capture the fine-grained semantics in sentences, which leads to poor predictions. To address this issue, we propose a novel Self-Adaptive Reconstruction Contrastive Sentence Embeddings (SARCSE) framework, which reconstructs all tokens in sentences with an AutoEncoder to help the model to preserve more fine-grained semantics during tokens aggregating. In addition, we proposed a self-adaptive reconstruction loss to alleviate the token bias towards frequency. Experimental results show that SARCSE gains significant improvements compared with the strong baseline SimCSE on the 7 STS tasks. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2931849329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931849329</sourcerecordid><originalsourceid>FETCH-proquest_journals_29318493293</originalsourceid><addsrcrecordid>eNqNysEKgkAUQNEhCJLyHwZaCzqjpcsQo0WrrFULMX3WiL2xeaP9fhJ9QKu7OHfGHCFl4MWhEAvmErW-74vNVkSRdNg1h67xdnXZWzUCP0GlkawZKqs08reyD55qtKakrx-hNKjwzhtt-AVp6MGMiqDmOaAFrIBnzxvU9fTQis2bsiNwf12y9T47pwevN_o1ANmi1YPBiQqRyCAOEzn1v-sD9JpEBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931849329</pqid></control><display><type>article</type><title>Self-Adaptive Reconstruction with Contrastive Learning for Unsupervised Sentence Embeddings</title><source>Free E- Journals</source><creator>Liu, Junlong ; Shang, Xichen ; Feng, Huawen ; Zheng, Junhao ; Ma, Qianli</creator><creatorcontrib>Liu, Junlong ; Shang, Xichen ; Feng, Huawen ; Zheng, Junhao ; Ma, Qianli</creatorcontrib><description>Unsupervised sentence embeddings task aims to convert sentences to semantic vector representations. Most previous works directly use the sentence representations derived from pretrained language models. However, due to the token bias in pretrained language models, the models can not capture the fine-grained semantics in sentences, which leads to poor predictions. To address this issue, we propose a novel Self-Adaptive Reconstruction Contrastive Sentence Embeddings (SARCSE) framework, which reconstructs all tokens in sentences with an AutoEncoder to help the model to preserve more fine-grained semantics during tokens aggregating. In addition, we proposed a self-adaptive reconstruction loss to alleviate the token bias towards frequency. Experimental results show that SARCSE gains significant improvements compared with the strong baseline SimCSE on the 7 STS tasks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bias ; Reconstruction ; Representations ; Semantics ; Sentences</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Liu, Junlong</creatorcontrib><creatorcontrib>Shang, Xichen</creatorcontrib><creatorcontrib>Feng, Huawen</creatorcontrib><creatorcontrib>Zheng, Junhao</creatorcontrib><creatorcontrib>Ma, Qianli</creatorcontrib><title>Self-Adaptive Reconstruction with Contrastive Learning for Unsupervised Sentence Embeddings</title><title>arXiv.org</title><description>Unsupervised sentence embeddings task aims to convert sentences to semantic vector representations. Most previous works directly use the sentence representations derived from pretrained language models. However, due to the token bias in pretrained language models, the models can not capture the fine-grained semantics in sentences, which leads to poor predictions. To address this issue, we propose a novel Self-Adaptive Reconstruction Contrastive Sentence Embeddings (SARCSE) framework, which reconstructs all tokens in sentences with an AutoEncoder to help the model to preserve more fine-grained semantics during tokens aggregating. In addition, we proposed a self-adaptive reconstruction loss to alleviate the token bias towards frequency. Experimental results show that SARCSE gains significant improvements compared with the strong baseline SimCSE on the 7 STS tasks.</description><subject>Bias</subject><subject>Reconstruction</subject><subject>Representations</subject><subject>Semantics</subject><subject>Sentences</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNysEKgkAUQNEhCJLyHwZaCzqjpcsQo0WrrFULMX3WiL2xeaP9fhJ9QKu7OHfGHCFl4MWhEAvmErW-74vNVkSRdNg1h67xdnXZWzUCP0GlkawZKqs08reyD55qtKakrx-hNKjwzhtt-AVp6MGMiqDmOaAFrIBnzxvU9fTQis2bsiNwf12y9T47pwevN_o1ANmi1YPBiQqRyCAOEzn1v-sD9JpEBA</recordid><startdate>20240223</startdate><enddate>20240223</enddate><creator>Liu, Junlong</creator><creator>Shang, Xichen</creator><creator>Feng, Huawen</creator><creator>Zheng, Junhao</creator><creator>Ma, Qianli</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240223</creationdate><title>Self-Adaptive Reconstruction with Contrastive Learning for Unsupervised Sentence Embeddings</title><author>Liu, Junlong ; Shang, Xichen ; Feng, Huawen ; Zheng, Junhao ; Ma, Qianli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29318493293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bias</topic><topic>Reconstruction</topic><topic>Representations</topic><topic>Semantics</topic><topic>Sentences</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Junlong</creatorcontrib><creatorcontrib>Shang, Xichen</creatorcontrib><creatorcontrib>Feng, Huawen</creatorcontrib><creatorcontrib>Zheng, Junhao</creatorcontrib><creatorcontrib>Ma, Qianli</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Junlong</au><au>Shang, Xichen</au><au>Feng, Huawen</au><au>Zheng, Junhao</au><au>Ma, Qianli</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Self-Adaptive Reconstruction with Contrastive Learning for Unsupervised Sentence Embeddings</atitle><jtitle>arXiv.org</jtitle><date>2024-02-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Unsupervised sentence embeddings task aims to convert sentences to semantic vector representations. Most previous works directly use the sentence representations derived from pretrained language models. However, due to the token bias in pretrained language models, the models can not capture the fine-grained semantics in sentences, which leads to poor predictions. To address this issue, we propose a novel Self-Adaptive Reconstruction Contrastive Sentence Embeddings (SARCSE) framework, which reconstructs all tokens in sentences with an AutoEncoder to help the model to preserve more fine-grained semantics during tokens aggregating. In addition, we proposed a self-adaptive reconstruction loss to alleviate the token bias towards frequency. Experimental results show that SARCSE gains significant improvements compared with the strong baseline SimCSE on the 7 STS tasks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2931849329 |
source | Free E- Journals |
subjects | Bias Reconstruction Representations Semantics Sentences |
title | Self-Adaptive Reconstruction with Contrastive Learning for Unsupervised Sentence Embeddings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Self-Adaptive%20Reconstruction%20with%20Contrastive%20Learning%20for%20Unsupervised%20Sentence%20Embeddings&rft.jtitle=arXiv.org&rft.au=Liu,%20Junlong&rft.date=2024-02-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2931849329%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931849329&rft_id=info:pmid/&rfr_iscdi=true |