Microstructure, Particle Size, and Magnetic Property of Fe-6.5 wt.% Si Nanocrystalline Alloys Prepared by Mechanical Alloying

Fe-6.5 wt.% Si nanocrystalline alloys with good magnetic softness were prepared by mechanical alloying at various milling times (0–12 h) via a high-energy ball mill. Elemental iron and silicon powders were used as raw materials. Structural evolution, particle size distribution, and magnetic properti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOM (1989) 2024-03, Vol.76 (3), p.1066-1075
Hauptverfasser: Sun, Yang, Chen, Yiyue, Lan, Chunyao, Tan, You, Zhang, Lin, Dong, Bowen, Lan, Song
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1075
container_issue 3
container_start_page 1066
container_title JOM (1989)
container_volume 76
creator Sun, Yang
Chen, Yiyue
Lan, Chunyao
Tan, You
Zhang, Lin
Dong, Bowen
Lan, Song
description Fe-6.5 wt.% Si nanocrystalline alloys with good magnetic softness were prepared by mechanical alloying at various milling times (0–12 h) via a high-energy ball mill. Elemental iron and silicon powders were used as raw materials. Structural evolution, particle size distribution, and magnetic properties were investigated for as-milled Fe-Si alloy powders. During the alloying process, Si atoms dissolve substitutionally into α-Fe lattice, causing a decrease of lattice parameter with the milling time. A single α-(Fe,Si) solid-solution phase with grain size of ~ 10 nm is obtained, and no ordered phases (B2 or DO3) are observed. Ball-milling effectively reduces particle size of the alloy powders from 64 μ m to 30  μ m, and exhibits a controlled distribution of the particle size. A transition in the dominant factor and a deviation from the sixth power law on grain size are confirmed in the coercivity of these Fe-Si alloy powders. Good magnetic softness, with a saturation magnetization of ~ 198 Am 2 /kg and coercivity of ~ 20 A/m, has been achieved. This study validates that mechanical alloying is an effective way to produce single-phase BCC Fe-6.5 wt.% Si alloy powders for applications with magnetic powder cores.
doi_str_mv 10.1007/s11837-023-06300-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2931772136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931772136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-cbb50b274bcced1d8e6d114aaf6c486719903fa8f03b10f015d07d6f232388ba3</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsv4Cog7kzNncxPZlmKVaHVgroOmUxSp4yZmswg48Jn8Vl8MlNHcOcqyb3f-QIHoVOgE6A0u_QAnGWERozQlFFK8j00giRmBHgC--FO44zEnPFDdOT9hgYozmGEPpaVco1vXafazukLvJKurVSt8UP1Hp7Slngp11aHIV65Zqtd2-PG4Lkm6ST5-nxrJ-chi--kbZTrfSvrurIaT-u66X1A9FY6XeKix0utnqWtlKyHbWXXx-jAyNrrk99zjJ7mV4-zG7K4v76dTRdEMchboooioUWUxYVSuoSS67QEiKU0qYp5mkGeU2YkN5QVQA2FpKRZmZqIRYzzQrIxOht6t6557bRvxabpnA1fiihnkGURsDSkoiG1U-KdNmLrqhfpegFU7DyLwbMInsWPZ5EHiA2QD2G71u6v-h_qGx1zgXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931772136</pqid></control><display><type>article</type><title>Microstructure, Particle Size, and Magnetic Property of Fe-6.5 wt.% Si Nanocrystalline Alloys Prepared by Mechanical Alloying</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sun, Yang ; Chen, Yiyue ; Lan, Chunyao ; Tan, You ; Zhang, Lin ; Dong, Bowen ; Lan, Song</creator><creatorcontrib>Sun, Yang ; Chen, Yiyue ; Lan, Chunyao ; Tan, You ; Zhang, Lin ; Dong, Bowen ; Lan, Song</creatorcontrib><description>Fe-6.5 wt.% Si nanocrystalline alloys with good magnetic softness were prepared by mechanical alloying at various milling times (0–12 h) via a high-energy ball mill. Elemental iron and silicon powders were used as raw materials. Structural evolution, particle size distribution, and magnetic properties were investigated for as-milled Fe-Si alloy powders. During the alloying process, Si atoms dissolve substitutionally into α-Fe lattice, causing a decrease of lattice parameter with the milling time. A single α-(Fe,Si) solid-solution phase with grain size of ~ 10 nm is obtained, and no ordered phases (B2 or DO3) are observed. Ball-milling effectively reduces particle size of the alloy powders from 64 μ m to 30  μ m, and exhibits a controlled distribution of the particle size. A transition in the dominant factor and a deviation from the sixth power law on grain size are confirmed in the coercivity of these Fe-Si alloy powders. Good magnetic softness, with a saturation magnetization of ~ 198 Am 2 /kg and coercivity of ~ 20 A/m, has been achieved. This study validates that mechanical alloying is an effective way to produce single-phase BCC Fe-6.5 wt.% Si alloy powders for applications with magnetic powder cores.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-023-06300-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloy powders ; Alloys ; Alpha iron ; Atoms &amp; subatomic particles ; Ball milling ; Ball mills ; Chemistry/Food Science ; Coercivity ; Earth Sciences ; Electrical Steels ; Engineering ; Environment ; Ferrous alloys ; Grain size ; Magnetic fields ; Magnetic properties ; Magnetic saturation ; Mechanical alloying ; Nanoalloys ; Particle size ; Particle size distribution ; Physics ; Raw materials ; Silicon ; Softness ; Solids</subject><ispartof>JOM (1989), 2024-03, Vol.76 (3), p.1066-1075</ispartof><rights>The Minerals, Metals &amp; Materials Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. Mar 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-cbb50b274bcced1d8e6d114aaf6c486719903fa8f03b10f015d07d6f232388ba3</citedby><cites>FETCH-LOGICAL-c319t-cbb50b274bcced1d8e6d114aaf6c486719903fa8f03b10f015d07d6f232388ba3</cites><orcidid>0000-0003-3373-2294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-023-06300-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-023-06300-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Sun, Yang</creatorcontrib><creatorcontrib>Chen, Yiyue</creatorcontrib><creatorcontrib>Lan, Chunyao</creatorcontrib><creatorcontrib>Tan, You</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Dong, Bowen</creatorcontrib><creatorcontrib>Lan, Song</creatorcontrib><title>Microstructure, Particle Size, and Magnetic Property of Fe-6.5 wt.% Si Nanocrystalline Alloys Prepared by Mechanical Alloying</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>Fe-6.5 wt.% Si nanocrystalline alloys with good magnetic softness were prepared by mechanical alloying at various milling times (0–12 h) via a high-energy ball mill. Elemental iron and silicon powders were used as raw materials. Structural evolution, particle size distribution, and magnetic properties were investigated for as-milled Fe-Si alloy powders. During the alloying process, Si atoms dissolve substitutionally into α-Fe lattice, causing a decrease of lattice parameter with the milling time. A single α-(Fe,Si) solid-solution phase with grain size of ~ 10 nm is obtained, and no ordered phases (B2 or DO3) are observed. Ball-milling effectively reduces particle size of the alloy powders from 64 μ m to 30  μ m, and exhibits a controlled distribution of the particle size. A transition in the dominant factor and a deviation from the sixth power law on grain size are confirmed in the coercivity of these Fe-Si alloy powders. Good magnetic softness, with a saturation magnetization of ~ 198 Am 2 /kg and coercivity of ~ 20 A/m, has been achieved. This study validates that mechanical alloying is an effective way to produce single-phase BCC Fe-6.5 wt.% Si alloy powders for applications with magnetic powder cores.</description><subject>Alloy powders</subject><subject>Alloys</subject><subject>Alpha iron</subject><subject>Atoms &amp; subatomic particles</subject><subject>Ball milling</subject><subject>Ball mills</subject><subject>Chemistry/Food Science</subject><subject>Coercivity</subject><subject>Earth Sciences</subject><subject>Electrical Steels</subject><subject>Engineering</subject><subject>Environment</subject><subject>Ferrous alloys</subject><subject>Grain size</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetic saturation</subject><subject>Mechanical alloying</subject><subject>Nanoalloys</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Physics</subject><subject>Raw materials</subject><subject>Silicon</subject><subject>Softness</subject><subject>Solids</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURoMoWKsv4Cog7kzNncxPZlmKVaHVgroOmUxSp4yZmswg48Jn8Vl8MlNHcOcqyb3f-QIHoVOgE6A0u_QAnGWERozQlFFK8j00giRmBHgC--FO44zEnPFDdOT9hgYozmGEPpaVco1vXafazukLvJKurVSt8UP1Hp7Slngp11aHIV65Zqtd2-PG4Lkm6ST5-nxrJ-chi--kbZTrfSvrurIaT-u66X1A9FY6XeKix0utnqWtlKyHbWXXx-jAyNrrk99zjJ7mV4-zG7K4v76dTRdEMchboooioUWUxYVSuoSS67QEiKU0qYp5mkGeU2YkN5QVQA2FpKRZmZqIRYzzQrIxOht6t6557bRvxabpnA1fiihnkGURsDSkoiG1U-KdNmLrqhfpegFU7DyLwbMInsWPZ5EHiA2QD2G71u6v-h_qGx1zgXA</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Sun, Yang</creator><creator>Chen, Yiyue</creator><creator>Lan, Chunyao</creator><creator>Tan, You</creator><creator>Zhang, Lin</creator><creator>Dong, Bowen</creator><creator>Lan, Song</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3373-2294</orcidid></search><sort><creationdate>20240301</creationdate><title>Microstructure, Particle Size, and Magnetic Property of Fe-6.5 wt.% Si Nanocrystalline Alloys Prepared by Mechanical Alloying</title><author>Sun, Yang ; Chen, Yiyue ; Lan, Chunyao ; Tan, You ; Zhang, Lin ; Dong, Bowen ; Lan, Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-cbb50b274bcced1d8e6d114aaf6c486719903fa8f03b10f015d07d6f232388ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloy powders</topic><topic>Alloys</topic><topic>Alpha iron</topic><topic>Atoms &amp; subatomic particles</topic><topic>Ball milling</topic><topic>Ball mills</topic><topic>Chemistry/Food Science</topic><topic>Coercivity</topic><topic>Earth Sciences</topic><topic>Electrical Steels</topic><topic>Engineering</topic><topic>Environment</topic><topic>Ferrous alloys</topic><topic>Grain size</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetic saturation</topic><topic>Mechanical alloying</topic><topic>Nanoalloys</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Physics</topic><topic>Raw materials</topic><topic>Silicon</topic><topic>Softness</topic><topic>Solids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yang</creatorcontrib><creatorcontrib>Chen, Yiyue</creatorcontrib><creatorcontrib>Lan, Chunyao</creatorcontrib><creatorcontrib>Tan, You</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Dong, Bowen</creatorcontrib><creatorcontrib>Lan, Song</creatorcontrib><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yang</au><au>Chen, Yiyue</au><au>Lan, Chunyao</au><au>Tan, You</au><au>Zhang, Lin</au><au>Dong, Bowen</au><au>Lan, Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure, Particle Size, and Magnetic Property of Fe-6.5 wt.% Si Nanocrystalline Alloys Prepared by Mechanical Alloying</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>76</volume><issue>3</issue><spage>1066</spage><epage>1075</epage><pages>1066-1075</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>Fe-6.5 wt.% Si nanocrystalline alloys with good magnetic softness were prepared by mechanical alloying at various milling times (0–12 h) via a high-energy ball mill. Elemental iron and silicon powders were used as raw materials. Structural evolution, particle size distribution, and magnetic properties were investigated for as-milled Fe-Si alloy powders. During the alloying process, Si atoms dissolve substitutionally into α-Fe lattice, causing a decrease of lattice parameter with the milling time. A single α-(Fe,Si) solid-solution phase with grain size of ~ 10 nm is obtained, and no ordered phases (B2 or DO3) are observed. Ball-milling effectively reduces particle size of the alloy powders from 64 μ m to 30  μ m, and exhibits a controlled distribution of the particle size. A transition in the dominant factor and a deviation from the sixth power law on grain size are confirmed in the coercivity of these Fe-Si alloy powders. Good magnetic softness, with a saturation magnetization of ~ 198 Am 2 /kg and coercivity of ~ 20 A/m, has been achieved. This study validates that mechanical alloying is an effective way to produce single-phase BCC Fe-6.5 wt.% Si alloy powders for applications with magnetic powder cores.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-023-06300-9</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3373-2294</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1047-4838
ispartof JOM (1989), 2024-03, Vol.76 (3), p.1066-1075
issn 1047-4838
1543-1851
language eng
recordid cdi_proquest_journals_2931772136
source SpringerLink Journals - AutoHoldings
subjects Alloy powders
Alloys
Alpha iron
Atoms & subatomic particles
Ball milling
Ball mills
Chemistry/Food Science
Coercivity
Earth Sciences
Electrical Steels
Engineering
Environment
Ferrous alloys
Grain size
Magnetic fields
Magnetic properties
Magnetic saturation
Mechanical alloying
Nanoalloys
Particle size
Particle size distribution
Physics
Raw materials
Silicon
Softness
Solids
title Microstructure, Particle Size, and Magnetic Property of Fe-6.5 wt.% Si Nanocrystalline Alloys Prepared by Mechanical Alloying
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A09%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure,%20Particle%20Size,%20and%20Magnetic%20Property%20of%20Fe-6.5%C2%A0wt.%25%20Si%20Nanocrystalline%20Alloys%20Prepared%20by%20Mechanical%20Alloying&rft.jtitle=JOM%20(1989)&rft.au=Sun,%20Yang&rft.date=2024-03-01&rft.volume=76&rft.issue=3&rft.spage=1066&rft.epage=1075&rft.pages=1066-1075&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-023-06300-9&rft_dat=%3Cproquest_cross%3E2931772136%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931772136&rft_id=info:pmid/&rfr_iscdi=true