Microstructure, Particle Size, and Magnetic Property of Fe-6.5 wt.% Si Nanocrystalline Alloys Prepared by Mechanical Alloying
Fe-6.5 wt.% Si nanocrystalline alloys with good magnetic softness were prepared by mechanical alloying at various milling times (0–12 h) via a high-energy ball mill. Elemental iron and silicon powders were used as raw materials. Structural evolution, particle size distribution, and magnetic properti...
Gespeichert in:
Veröffentlicht in: | JOM (1989) 2024-03, Vol.76 (3), p.1066-1075 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1075 |
---|---|
container_issue | 3 |
container_start_page | 1066 |
container_title | JOM (1989) |
container_volume | 76 |
creator | Sun, Yang Chen, Yiyue Lan, Chunyao Tan, You Zhang, Lin Dong, Bowen Lan, Song |
description | Fe-6.5 wt.% Si nanocrystalline alloys with good magnetic softness were prepared by mechanical alloying at various milling times (0–12 h) via a high-energy ball mill. Elemental iron and silicon powders were used as raw materials. Structural evolution, particle size distribution, and magnetic properties were investigated for as-milled Fe-Si alloy powders. During the alloying process, Si atoms dissolve substitutionally into α-Fe lattice, causing a decrease of lattice parameter with the milling time. A single α-(Fe,Si) solid-solution phase with grain size of ~ 10 nm is obtained, and no ordered phases (B2 or DO3) are observed. Ball-milling effectively reduces particle size of the alloy powders from 64
μ
m to 30
μ
m, and exhibits a controlled distribution of the particle size. A transition in the dominant factor and a deviation from the sixth power law on grain size are confirmed in the coercivity of these Fe-Si alloy powders. Good magnetic softness, with a saturation magnetization of ~ 198 Am
2
/kg and coercivity of ~ 20 A/m, has been achieved. This study validates that mechanical alloying is an effective way to produce single-phase BCC Fe-6.5 wt.% Si alloy powders for applications with magnetic powder cores. |
doi_str_mv | 10.1007/s11837-023-06300-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2931772136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931772136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-cbb50b274bcced1d8e6d114aaf6c486719903fa8f03b10f015d07d6f232388ba3</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsv4Cog7kzNncxPZlmKVaHVgroOmUxSp4yZmswg48Jn8Vl8MlNHcOcqyb3f-QIHoVOgE6A0u_QAnGWERozQlFFK8j00giRmBHgC--FO44zEnPFDdOT9hgYozmGEPpaVco1vXafazukLvJKurVSt8UP1Hp7Slngp11aHIV65Zqtd2-PG4Lkm6ST5-nxrJ-chi--kbZTrfSvrurIaT-u66X1A9FY6XeKix0utnqWtlKyHbWXXx-jAyNrrk99zjJ7mV4-zG7K4v76dTRdEMchboooioUWUxYVSuoSS67QEiKU0qYp5mkGeU2YkN5QVQA2FpKRZmZqIRYzzQrIxOht6t6557bRvxabpnA1fiihnkGURsDSkoiG1U-KdNmLrqhfpegFU7DyLwbMInsWPZ5EHiA2QD2G71u6v-h_qGx1zgXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931772136</pqid></control><display><type>article</type><title>Microstructure, Particle Size, and Magnetic Property of Fe-6.5 wt.% Si Nanocrystalline Alloys Prepared by Mechanical Alloying</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sun, Yang ; Chen, Yiyue ; Lan, Chunyao ; Tan, You ; Zhang, Lin ; Dong, Bowen ; Lan, Song</creator><creatorcontrib>Sun, Yang ; Chen, Yiyue ; Lan, Chunyao ; Tan, You ; Zhang, Lin ; Dong, Bowen ; Lan, Song</creatorcontrib><description>Fe-6.5 wt.% Si nanocrystalline alloys with good magnetic softness were prepared by mechanical alloying at various milling times (0–12 h) via a high-energy ball mill. Elemental iron and silicon powders were used as raw materials. Structural evolution, particle size distribution, and magnetic properties were investigated for as-milled Fe-Si alloy powders. During the alloying process, Si atoms dissolve substitutionally into α-Fe lattice, causing a decrease of lattice parameter with the milling time. A single α-(Fe,Si) solid-solution phase with grain size of ~ 10 nm is obtained, and no ordered phases (B2 or DO3) are observed. Ball-milling effectively reduces particle size of the alloy powders from 64
μ
m to 30
μ
m, and exhibits a controlled distribution of the particle size. A transition in the dominant factor and a deviation from the sixth power law on grain size are confirmed in the coercivity of these Fe-Si alloy powders. Good magnetic softness, with a saturation magnetization of ~ 198 Am
2
/kg and coercivity of ~ 20 A/m, has been achieved. This study validates that mechanical alloying is an effective way to produce single-phase BCC Fe-6.5 wt.% Si alloy powders for applications with magnetic powder cores.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-023-06300-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloy powders ; Alloys ; Alpha iron ; Atoms & subatomic particles ; Ball milling ; Ball mills ; Chemistry/Food Science ; Coercivity ; Earth Sciences ; Electrical Steels ; Engineering ; Environment ; Ferrous alloys ; Grain size ; Magnetic fields ; Magnetic properties ; Magnetic saturation ; Mechanical alloying ; Nanoalloys ; Particle size ; Particle size distribution ; Physics ; Raw materials ; Silicon ; Softness ; Solids</subject><ispartof>JOM (1989), 2024-03, Vol.76 (3), p.1066-1075</ispartof><rights>The Minerals, Metals & Materials Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. Mar 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-cbb50b274bcced1d8e6d114aaf6c486719903fa8f03b10f015d07d6f232388ba3</citedby><cites>FETCH-LOGICAL-c319t-cbb50b274bcced1d8e6d114aaf6c486719903fa8f03b10f015d07d6f232388ba3</cites><orcidid>0000-0003-3373-2294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-023-06300-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-023-06300-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Sun, Yang</creatorcontrib><creatorcontrib>Chen, Yiyue</creatorcontrib><creatorcontrib>Lan, Chunyao</creatorcontrib><creatorcontrib>Tan, You</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Dong, Bowen</creatorcontrib><creatorcontrib>Lan, Song</creatorcontrib><title>Microstructure, Particle Size, and Magnetic Property of Fe-6.5 wt.% Si Nanocrystalline Alloys Prepared by Mechanical Alloying</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>Fe-6.5 wt.% Si nanocrystalline alloys with good magnetic softness were prepared by mechanical alloying at various milling times (0–12 h) via a high-energy ball mill. Elemental iron and silicon powders were used as raw materials. Structural evolution, particle size distribution, and magnetic properties were investigated for as-milled Fe-Si alloy powders. During the alloying process, Si atoms dissolve substitutionally into α-Fe lattice, causing a decrease of lattice parameter with the milling time. A single α-(Fe,Si) solid-solution phase with grain size of ~ 10 nm is obtained, and no ordered phases (B2 or DO3) are observed. Ball-milling effectively reduces particle size of the alloy powders from 64
μ
m to 30
μ
m, and exhibits a controlled distribution of the particle size. A transition in the dominant factor and a deviation from the sixth power law on grain size are confirmed in the coercivity of these Fe-Si alloy powders. Good magnetic softness, with a saturation magnetization of ~ 198 Am
2
/kg and coercivity of ~ 20 A/m, has been achieved. This study validates that mechanical alloying is an effective way to produce single-phase BCC Fe-6.5 wt.% Si alloy powders for applications with magnetic powder cores.</description><subject>Alloy powders</subject><subject>Alloys</subject><subject>Alpha iron</subject><subject>Atoms & subatomic particles</subject><subject>Ball milling</subject><subject>Ball mills</subject><subject>Chemistry/Food Science</subject><subject>Coercivity</subject><subject>Earth Sciences</subject><subject>Electrical Steels</subject><subject>Engineering</subject><subject>Environment</subject><subject>Ferrous alloys</subject><subject>Grain size</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetic saturation</subject><subject>Mechanical alloying</subject><subject>Nanoalloys</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Physics</subject><subject>Raw materials</subject><subject>Silicon</subject><subject>Softness</subject><subject>Solids</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURoMoWKsv4Cog7kzNncxPZlmKVaHVgroOmUxSp4yZmswg48Jn8Vl8MlNHcOcqyb3f-QIHoVOgE6A0u_QAnGWERozQlFFK8j00giRmBHgC--FO44zEnPFDdOT9hgYozmGEPpaVco1vXafazukLvJKurVSt8UP1Hp7Slngp11aHIV65Zqtd2-PG4Lkm6ST5-nxrJ-chi--kbZTrfSvrurIaT-u66X1A9FY6XeKix0utnqWtlKyHbWXXx-jAyNrrk99zjJ7mV4-zG7K4v76dTRdEMchboooioUWUxYVSuoSS67QEiKU0qYp5mkGeU2YkN5QVQA2FpKRZmZqIRYzzQrIxOht6t6557bRvxabpnA1fiihnkGURsDSkoiG1U-KdNmLrqhfpegFU7DyLwbMInsWPZ5EHiA2QD2G71u6v-h_qGx1zgXA</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Sun, Yang</creator><creator>Chen, Yiyue</creator><creator>Lan, Chunyao</creator><creator>Tan, You</creator><creator>Zhang, Lin</creator><creator>Dong, Bowen</creator><creator>Lan, Song</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3373-2294</orcidid></search><sort><creationdate>20240301</creationdate><title>Microstructure, Particle Size, and Magnetic Property of Fe-6.5 wt.% Si Nanocrystalline Alloys Prepared by Mechanical Alloying</title><author>Sun, Yang ; Chen, Yiyue ; Lan, Chunyao ; Tan, You ; Zhang, Lin ; Dong, Bowen ; Lan, Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-cbb50b274bcced1d8e6d114aaf6c486719903fa8f03b10f015d07d6f232388ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloy powders</topic><topic>Alloys</topic><topic>Alpha iron</topic><topic>Atoms & subatomic particles</topic><topic>Ball milling</topic><topic>Ball mills</topic><topic>Chemistry/Food Science</topic><topic>Coercivity</topic><topic>Earth Sciences</topic><topic>Electrical Steels</topic><topic>Engineering</topic><topic>Environment</topic><topic>Ferrous alloys</topic><topic>Grain size</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetic saturation</topic><topic>Mechanical alloying</topic><topic>Nanoalloys</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Physics</topic><topic>Raw materials</topic><topic>Silicon</topic><topic>Softness</topic><topic>Solids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yang</creatorcontrib><creatorcontrib>Chen, Yiyue</creatorcontrib><creatorcontrib>Lan, Chunyao</creatorcontrib><creatorcontrib>Tan, You</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Dong, Bowen</creatorcontrib><creatorcontrib>Lan, Song</creatorcontrib><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yang</au><au>Chen, Yiyue</au><au>Lan, Chunyao</au><au>Tan, You</au><au>Zhang, Lin</au><au>Dong, Bowen</au><au>Lan, Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure, Particle Size, and Magnetic Property of Fe-6.5 wt.% Si Nanocrystalline Alloys Prepared by Mechanical Alloying</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>76</volume><issue>3</issue><spage>1066</spage><epage>1075</epage><pages>1066-1075</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>Fe-6.5 wt.% Si nanocrystalline alloys with good magnetic softness were prepared by mechanical alloying at various milling times (0–12 h) via a high-energy ball mill. Elemental iron and silicon powders were used as raw materials. Structural evolution, particle size distribution, and magnetic properties were investigated for as-milled Fe-Si alloy powders. During the alloying process, Si atoms dissolve substitutionally into α-Fe lattice, causing a decrease of lattice parameter with the milling time. A single α-(Fe,Si) solid-solution phase with grain size of ~ 10 nm is obtained, and no ordered phases (B2 or DO3) are observed. Ball-milling effectively reduces particle size of the alloy powders from 64
μ
m to 30
μ
m, and exhibits a controlled distribution of the particle size. A transition in the dominant factor and a deviation from the sixth power law on grain size are confirmed in the coercivity of these Fe-Si alloy powders. Good magnetic softness, with a saturation magnetization of ~ 198 Am
2
/kg and coercivity of ~ 20 A/m, has been achieved. This study validates that mechanical alloying is an effective way to produce single-phase BCC Fe-6.5 wt.% Si alloy powders for applications with magnetic powder cores.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-023-06300-9</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3373-2294</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-4838 |
ispartof | JOM (1989), 2024-03, Vol.76 (3), p.1066-1075 |
issn | 1047-4838 1543-1851 |
language | eng |
recordid | cdi_proquest_journals_2931772136 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alloy powders Alloys Alpha iron Atoms & subatomic particles Ball milling Ball mills Chemistry/Food Science Coercivity Earth Sciences Electrical Steels Engineering Environment Ferrous alloys Grain size Magnetic fields Magnetic properties Magnetic saturation Mechanical alloying Nanoalloys Particle size Particle size distribution Physics Raw materials Silicon Softness Solids |
title | Microstructure, Particle Size, and Magnetic Property of Fe-6.5 wt.% Si Nanocrystalline Alloys Prepared by Mechanical Alloying |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A09%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure,%20Particle%20Size,%20and%20Magnetic%20Property%20of%20Fe-6.5%C2%A0wt.%25%20Si%20Nanocrystalline%20Alloys%20Prepared%20by%20Mechanical%20Alloying&rft.jtitle=JOM%20(1989)&rft.au=Sun,%20Yang&rft.date=2024-03-01&rft.volume=76&rft.issue=3&rft.spage=1066&rft.epage=1075&rft.pages=1066-1075&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-023-06300-9&rft_dat=%3Cproquest_cross%3E2931772136%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931772136&rft_id=info:pmid/&rfr_iscdi=true |