Automated Fruit Sorting in Smart Agriculture System: Analysis of Deep Learning-based Algorithms

Automated fruit sorting plays a crucial role in smart agriculture, enabling efficient and accurate classification of fruits based on various quality parameters. Traditionally, rule-based and machine-learning methods have been employed for fruit sorting, but in recent years, deep learning-based appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced computer science & applications 2024, Vol.15 (1)
Hauptverfasser: Liu, Cheng, Niu, Shengxiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title International journal of advanced computer science & applications
container_volume 15
creator Liu, Cheng
Niu, Shengxiao
description Automated fruit sorting plays a crucial role in smart agriculture, enabling efficient and accurate classification of fruits based on various quality parameters. Traditionally, rule-based and machine-learning methods have been employed for fruit sorting, but in recent years, deep learning-based approaches have gained significant attention. This paper investigates deep learning methods for fruit sorting and justifies their prevalence in the field. Therefore, it is necessary to address these limitations and improve the effectiveness of CNN-based fruit sorting methods. This research paper presents a comprehensive analysis of CNN-based methods, highlighting their strengths and limitations. This analysis aims to contribute to advancing automated fruit sorting in smart agriculture and provide insights for future research and development in deep learning-based fruit sorting techniques.
doi_str_mv 10.14569/IJACSA.2024.0150183
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2931756679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931756679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-ae2043c00db3899dc62644bf13a6aeee24bd00d503e265c5e093bfb0c08804123</originalsourceid><addsrcrecordid>eNotkE1Lw0AQhhdRsNT-Aw8LnlNnP5N4C9VqpeAhCt6WTTKpKfmou5tD_72x7VxmYN55eech5J7Bkkml08fNe7bKsyUHLpfAFLBEXJEZZ0pHSsVwfZqTiEH8fUsW3u9hKpFynYgZMdkYhs4GrOjajU2g-eBC0-9o09O8sy7QbOeacmzD6JDmRx-we6JZb9ujbzwdavqMeKBbtK6fzqLC-skqa3eDa8JP5-_ITW1bj4tLn5Ov9cvn6i3afrxuVtk2KnksQ2SRgxQlQFWIJE2rUnMtZVEzYbVFRC6LaloqEMi1KhVCKoq6gBKSBCTjYk4ezr4HN_yO6IPZD6ObYnrDU8FipXWcTip5VpVu8N5hbQ6umb48GgbmRNOcaZp_muZCU_wBGCtoCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931756679</pqid></control><display><type>article</type><title>Automated Fruit Sorting in Smart Agriculture System: Analysis of Deep Learning-based Algorithms</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Cheng ; Niu, Shengxiao</creator><creatorcontrib>Liu, Cheng ; Niu, Shengxiao</creatorcontrib><description>Automated fruit sorting plays a crucial role in smart agriculture, enabling efficient and accurate classification of fruits based on various quality parameters. Traditionally, rule-based and machine-learning methods have been employed for fruit sorting, but in recent years, deep learning-based approaches have gained significant attention. This paper investigates deep learning methods for fruit sorting and justifies their prevalence in the field. Therefore, it is necessary to address these limitations and improve the effectiveness of CNN-based fruit sorting methods. This research paper presents a comprehensive analysis of CNN-based methods, highlighting their strengths and limitations. This analysis aims to contribute to advancing automated fruit sorting in smart agriculture and provide insights for future research and development in deep learning-based fruit sorting techniques.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2024.0150183</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Agriculture ; Automation ; Citrus fruits ; Classification ; Datasets ; Deep learning ; Machine learning ; Neural networks ; R&amp;D ; Research &amp; development ; Sorting algorithms ; Support vector machines</subject><ispartof>International journal of advanced computer science &amp; applications, 2024, Vol.15 (1)</ispartof><rights>2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Liu, Cheng</creatorcontrib><creatorcontrib>Niu, Shengxiao</creatorcontrib><title>Automated Fruit Sorting in Smart Agriculture System: Analysis of Deep Learning-based Algorithms</title><title>International journal of advanced computer science &amp; applications</title><description>Automated fruit sorting plays a crucial role in smart agriculture, enabling efficient and accurate classification of fruits based on various quality parameters. Traditionally, rule-based and machine-learning methods have been employed for fruit sorting, but in recent years, deep learning-based approaches have gained significant attention. This paper investigates deep learning methods for fruit sorting and justifies their prevalence in the field. Therefore, it is necessary to address these limitations and improve the effectiveness of CNN-based fruit sorting methods. This research paper presents a comprehensive analysis of CNN-based methods, highlighting their strengths and limitations. This analysis aims to contribute to advancing automated fruit sorting in smart agriculture and provide insights for future research and development in deep learning-based fruit sorting techniques.</description><subject>Agriculture</subject><subject>Automation</subject><subject>Citrus fruits</subject><subject>Classification</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Sorting algorithms</subject><subject>Support vector machines</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkE1Lw0AQhhdRsNT-Aw8LnlNnP5N4C9VqpeAhCt6WTTKpKfmou5tD_72x7VxmYN55eech5J7Bkkml08fNe7bKsyUHLpfAFLBEXJEZZ0pHSsVwfZqTiEH8fUsW3u9hKpFynYgZMdkYhs4GrOjajU2g-eBC0-9o09O8sy7QbOeacmzD6JDmRx-we6JZb9ujbzwdavqMeKBbtK6fzqLC-skqa3eDa8JP5-_ITW1bj4tLn5Ov9cvn6i3afrxuVtk2KnksQ2SRgxQlQFWIJE2rUnMtZVEzYbVFRC6LaloqEMi1KhVCKoq6gBKSBCTjYk4ezr4HN_yO6IPZD6ObYnrDU8FipXWcTip5VpVu8N5hbQ6umb48GgbmRNOcaZp_muZCU_wBGCtoCg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Liu, Cheng</creator><creator>Niu, Shengxiao</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>2024</creationdate><title>Automated Fruit Sorting in Smart Agriculture System: Analysis of Deep Learning-based Algorithms</title><author>Liu, Cheng ; Niu, Shengxiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-ae2043c00db3899dc62644bf13a6aeee24bd00d503e265c5e093bfb0c08804123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agriculture</topic><topic>Automation</topic><topic>Citrus fruits</topic><topic>Classification</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Sorting algorithms</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Cheng</creatorcontrib><creatorcontrib>Niu, Shengxiao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Cheng</au><au>Niu, Shengxiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Fruit Sorting in Smart Agriculture System: Analysis of Deep Learning-based Algorithms</atitle><jtitle>International journal of advanced computer science &amp; applications</jtitle><date>2024</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>Automated fruit sorting plays a crucial role in smart agriculture, enabling efficient and accurate classification of fruits based on various quality parameters. Traditionally, rule-based and machine-learning methods have been employed for fruit sorting, but in recent years, deep learning-based approaches have gained significant attention. This paper investigates deep learning methods for fruit sorting and justifies their prevalence in the field. Therefore, it is necessary to address these limitations and improve the effectiveness of CNN-based fruit sorting methods. This research paper presents a comprehensive analysis of CNN-based methods, highlighting their strengths and limitations. This analysis aims to contribute to advancing automated fruit sorting in smart agriculture and provide insights for future research and development in deep learning-based fruit sorting techniques.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2024.0150183</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-107X
ispartof International journal of advanced computer science & applications, 2024, Vol.15 (1)
issn 2158-107X
2156-5570
language eng
recordid cdi_proquest_journals_2931756679
source EZB-FREE-00999 freely available EZB journals
subjects Agriculture
Automation
Citrus fruits
Classification
Datasets
Deep learning
Machine learning
Neural networks
R&D
Research & development
Sorting algorithms
Support vector machines
title Automated Fruit Sorting in Smart Agriculture System: Analysis of Deep Learning-based Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A40%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Fruit%20Sorting%20in%20Smart%20Agriculture%20System:%20Analysis%20of%20Deep%20Learning-based%20Algorithms&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Liu,%20Cheng&rft.date=2024&rft.volume=15&rft.issue=1&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2024.0150183&rft_dat=%3Cproquest_cross%3E2931756679%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931756679&rft_id=info:pmid/&rfr_iscdi=true