Automated Fruit Sorting in Smart Agriculture System: Analysis of Deep Learning-based Algorithms
Automated fruit sorting plays a crucial role in smart agriculture, enabling efficient and accurate classification of fruits based on various quality parameters. Traditionally, rule-based and machine-learning methods have been employed for fruit sorting, but in recent years, deep learning-based appro...
Gespeichert in:
Veröffentlicht in: | International journal of advanced computer science & applications 2024, Vol.15 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | International journal of advanced computer science & applications |
container_volume | 15 |
creator | Liu, Cheng Niu, Shengxiao |
description | Automated fruit sorting plays a crucial role in smart agriculture, enabling efficient and accurate classification of fruits based on various quality parameters. Traditionally, rule-based and machine-learning methods have been employed for fruit sorting, but in recent years, deep learning-based approaches have gained significant attention. This paper investigates deep learning methods for fruit sorting and justifies their prevalence in the field. Therefore, it is necessary to address these limitations and improve the effectiveness of CNN-based fruit sorting methods. This research paper presents a comprehensive analysis of CNN-based methods, highlighting their strengths and limitations. This analysis aims to contribute to advancing automated fruit sorting in smart agriculture and provide insights for future research and development in deep learning-based fruit sorting techniques. |
doi_str_mv | 10.14569/IJACSA.2024.0150183 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2931756679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931756679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-ae2043c00db3899dc62644bf13a6aeee24bd00d503e265c5e093bfb0c08804123</originalsourceid><addsrcrecordid>eNotkE1Lw0AQhhdRsNT-Aw8LnlNnP5N4C9VqpeAhCt6WTTKpKfmou5tD_72x7VxmYN55eech5J7Bkkml08fNe7bKsyUHLpfAFLBEXJEZZ0pHSsVwfZqTiEH8fUsW3u9hKpFynYgZMdkYhs4GrOjajU2g-eBC0-9o09O8sy7QbOeacmzD6JDmRx-we6JZb9ujbzwdavqMeKBbtK6fzqLC-skqa3eDa8JP5-_ITW1bj4tLn5Ov9cvn6i3afrxuVtk2KnksQ2SRgxQlQFWIJE2rUnMtZVEzYbVFRC6LaloqEMi1KhVCKoq6gBKSBCTjYk4ezr4HN_yO6IPZD6ObYnrDU8FipXWcTip5VpVu8N5hbQ6umb48GgbmRNOcaZp_muZCU_wBGCtoCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931756679</pqid></control><display><type>article</type><title>Automated Fruit Sorting in Smart Agriculture System: Analysis of Deep Learning-based Algorithms</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Cheng ; Niu, Shengxiao</creator><creatorcontrib>Liu, Cheng ; Niu, Shengxiao</creatorcontrib><description>Automated fruit sorting plays a crucial role in smart agriculture, enabling efficient and accurate classification of fruits based on various quality parameters. Traditionally, rule-based and machine-learning methods have been employed for fruit sorting, but in recent years, deep learning-based approaches have gained significant attention. This paper investigates deep learning methods for fruit sorting and justifies their prevalence in the field. Therefore, it is necessary to address these limitations and improve the effectiveness of CNN-based fruit sorting methods. This research paper presents a comprehensive analysis of CNN-based methods, highlighting their strengths and limitations. This analysis aims to contribute to advancing automated fruit sorting in smart agriculture and provide insights for future research and development in deep learning-based fruit sorting techniques.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2024.0150183</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Agriculture ; Automation ; Citrus fruits ; Classification ; Datasets ; Deep learning ; Machine learning ; Neural networks ; R&D ; Research & development ; Sorting algorithms ; Support vector machines</subject><ispartof>International journal of advanced computer science & applications, 2024, Vol.15 (1)</ispartof><rights>2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Liu, Cheng</creatorcontrib><creatorcontrib>Niu, Shengxiao</creatorcontrib><title>Automated Fruit Sorting in Smart Agriculture System: Analysis of Deep Learning-based Algorithms</title><title>International journal of advanced computer science & applications</title><description>Automated fruit sorting plays a crucial role in smart agriculture, enabling efficient and accurate classification of fruits based on various quality parameters. Traditionally, rule-based and machine-learning methods have been employed for fruit sorting, but in recent years, deep learning-based approaches have gained significant attention. This paper investigates deep learning methods for fruit sorting and justifies their prevalence in the field. Therefore, it is necessary to address these limitations and improve the effectiveness of CNN-based fruit sorting methods. This research paper presents a comprehensive analysis of CNN-based methods, highlighting their strengths and limitations. This analysis aims to contribute to advancing automated fruit sorting in smart agriculture and provide insights for future research and development in deep learning-based fruit sorting techniques.</description><subject>Agriculture</subject><subject>Automation</subject><subject>Citrus fruits</subject><subject>Classification</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>R&D</subject><subject>Research & development</subject><subject>Sorting algorithms</subject><subject>Support vector machines</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkE1Lw0AQhhdRsNT-Aw8LnlNnP5N4C9VqpeAhCt6WTTKpKfmou5tD_72x7VxmYN55eech5J7Bkkml08fNe7bKsyUHLpfAFLBEXJEZZ0pHSsVwfZqTiEH8fUsW3u9hKpFynYgZMdkYhs4GrOjajU2g-eBC0-9o09O8sy7QbOeacmzD6JDmRx-we6JZb9ujbzwdavqMeKBbtK6fzqLC-skqa3eDa8JP5-_ITW1bj4tLn5Ov9cvn6i3afrxuVtk2KnksQ2SRgxQlQFWIJE2rUnMtZVEzYbVFRC6LaloqEMi1KhVCKoq6gBKSBCTjYk4ezr4HN_yO6IPZD6ObYnrDU8FipXWcTip5VpVu8N5hbQ6umb48GgbmRNOcaZp_muZCU_wBGCtoCg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Liu, Cheng</creator><creator>Niu, Shengxiao</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>2024</creationdate><title>Automated Fruit Sorting in Smart Agriculture System: Analysis of Deep Learning-based Algorithms</title><author>Liu, Cheng ; Niu, Shengxiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-ae2043c00db3899dc62644bf13a6aeee24bd00d503e265c5e093bfb0c08804123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agriculture</topic><topic>Automation</topic><topic>Citrus fruits</topic><topic>Classification</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>R&D</topic><topic>Research & development</topic><topic>Sorting algorithms</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Cheng</creatorcontrib><creatorcontrib>Niu, Shengxiao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Cheng</au><au>Niu, Shengxiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Fruit Sorting in Smart Agriculture System: Analysis of Deep Learning-based Algorithms</atitle><jtitle>International journal of advanced computer science & applications</jtitle><date>2024</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>Automated fruit sorting plays a crucial role in smart agriculture, enabling efficient and accurate classification of fruits based on various quality parameters. Traditionally, rule-based and machine-learning methods have been employed for fruit sorting, but in recent years, deep learning-based approaches have gained significant attention. This paper investigates deep learning methods for fruit sorting and justifies their prevalence in the field. Therefore, it is necessary to address these limitations and improve the effectiveness of CNN-based fruit sorting methods. This research paper presents a comprehensive analysis of CNN-based methods, highlighting their strengths and limitations. This analysis aims to contribute to advancing automated fruit sorting in smart agriculture and provide insights for future research and development in deep learning-based fruit sorting techniques.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2024.0150183</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-107X |
ispartof | International journal of advanced computer science & applications, 2024, Vol.15 (1) |
issn | 2158-107X 2156-5570 |
language | eng |
recordid | cdi_proquest_journals_2931756679 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Agriculture Automation Citrus fruits Classification Datasets Deep learning Machine learning Neural networks R&D Research & development Sorting algorithms Support vector machines |
title | Automated Fruit Sorting in Smart Agriculture System: Analysis of Deep Learning-based Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A40%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Fruit%20Sorting%20in%20Smart%20Agriculture%20System:%20Analysis%20of%20Deep%20Learning-based%20Algorithms&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Liu,%20Cheng&rft.date=2024&rft.volume=15&rft.issue=1&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2024.0150183&rft_dat=%3Cproquest_cross%3E2931756679%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931756679&rft_id=info:pmid/&rfr_iscdi=true |