A Safe Separator with Heat‐Dispersing Channels for High‐Rate Lithium‐Ion Batteries
Separators are becoming increasingly important in both academic research and industrial production as a means of enhancing the performance of lithium‐ion batteries (LIBs), particularly at a high rate. However, fast charge–discharge processes will produce local heat accumulation, which accelerates th...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-02, Vol.34 (9), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Yuan, Botao Feng, Yuhan Qiu, Xinghan He, Yuhui Dong, Liwei Zhong, Shijie Liu, Jipeng Liang, Yifang Liu, Yuanpeng Xie, Haodong Liu, Zhezhi Han, Jiecai He, Weidong |
description | Separators are becoming increasingly important in both academic research and industrial production as a means of enhancing the performance of lithium‐ion batteries (LIBs), particularly at a high rate. However, fast charge–discharge processes will produce local heat accumulation, which accelerates the local reaction rate of Li+ to form lithium dendrites. Commercial polyolefin separators fail to tackle the above issue due to inferior thermal stability. Herein, a core–shell structure is proposed to reinforce the polyvinylidene fluoride‐hexafluoropropylene (PVDF‐HFP) matrix through encircling carbon nanotube (CNT) by adherent polydopamine (PDA). The core–shell 3D structure with PDA avoids the short circuits caused by the electrically conductive CNT, and meantime, the CNT serves as an effective radiator for dispersing local heat sources verified through finite element analysis. The composite separator allows LIBs to achieve high Li+ conductivity (0.49 × 10−3 S cm−1) and Li+ transfer number (0.74), resulting in a high capacity retention of 87.35% after 800 cycles at 5C. In particular, the safety is confirmed that the composite separator avoids violent growth of lithium dendrites caused by local heat accumulation through phase‐field simulations. This work suggests a promising approach for the fabrication of core–shell nanotube composite separators for high‐rate and safe LIBs.
In this study, a core–shell structure is proposed to reinforce the polyvinylidene fluoride‐hexafluoropropylene through encircling carbon nanotube (CNT) by adherent polydopamine. The CNT serves as an effective radiator for dispersing local heat sources. The composite separator avoids the violent growth of lithium dendrites caused by local heat accumulation, thus giving rise to high‐rate and safe lithium‐ion batteries. |
doi_str_mv | 10.1002/adfm.202308929 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2931493741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931493741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3179-d0ae12c97e7d0a8735ca12d9c3777212b53d5e233240d1b1e619fb55769e5af03</originalsourceid><addsrcrecordid>eNqFkEFPAjEQhRujiYhePTfxvNhpd7f0iCBCgjERTbg1ZXcWSmB3bZcQbv4Ef6O_xBIMHj3Nm8z35iWPkFtgHWCM35u82HQ444J1FVdnpAUppJFgvHt-0jC7JFferxgDKUXcIrMenZoC6RRr40xTObqzzZKO0DTfn18D62t03pYL2l-assS1p0VgRnaxDOdX0yCdBN5uN2EdVyV9ME2DzqK_JheFWXu8-Z1t8j58fOuPosnL07jfm0SZAKminBkEnimJMsiuFElmgOcqE1JKDnyeiDxBLgSPWQ5zwBRUMU8SmSpMTMFEm9wd_9au-tiib_Sq2royRGquBMRKyBgC1TlSmau8d1jo2tmNcXsNTB_a04f29Km9YFBHw86ucf8PrXuD4fOf9we0EnWD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931493741</pqid></control><display><type>article</type><title>A Safe Separator with Heat‐Dispersing Channels for High‐Rate Lithium‐Ion Batteries</title><source>Wiley Journals</source><creator>Yuan, Botao ; Feng, Yuhan ; Qiu, Xinghan ; He, Yuhui ; Dong, Liwei ; Zhong, Shijie ; Liu, Jipeng ; Liang, Yifang ; Liu, Yuanpeng ; Xie, Haodong ; Liu, Zhezhi ; Han, Jiecai ; He, Weidong</creator><creatorcontrib>Yuan, Botao ; Feng, Yuhan ; Qiu, Xinghan ; He, Yuhui ; Dong, Liwei ; Zhong, Shijie ; Liu, Jipeng ; Liang, Yifang ; Liu, Yuanpeng ; Xie, Haodong ; Liu, Zhezhi ; Han, Jiecai ; He, Weidong</creatorcontrib><description>Separators are becoming increasingly important in both academic research and industrial production as a means of enhancing the performance of lithium‐ion batteries (LIBs), particularly at a high rate. However, fast charge–discharge processes will produce local heat accumulation, which accelerates the local reaction rate of Li+ to form lithium dendrites. Commercial polyolefin separators fail to tackle the above issue due to inferior thermal stability. Herein, a core–shell structure is proposed to reinforce the polyvinylidene fluoride‐hexafluoropropylene (PVDF‐HFP) matrix through encircling carbon nanotube (CNT) by adherent polydopamine (PDA). The core–shell 3D structure with PDA avoids the short circuits caused by the electrically conductive CNT, and meantime, the CNT serves as an effective radiator for dispersing local heat sources verified through finite element analysis. The composite separator allows LIBs to achieve high Li+ conductivity (0.49 × 10−3 S cm−1) and Li+ transfer number (0.74), resulting in a high capacity retention of 87.35% after 800 cycles at 5C. In particular, the safety is confirmed that the composite separator avoids violent growth of lithium dendrites caused by local heat accumulation through phase‐field simulations. This work suggests a promising approach for the fabrication of core–shell nanotube composite separators for high‐rate and safe LIBs.
In this study, a core–shell structure is proposed to reinforce the polyvinylidene fluoride‐hexafluoropropylene through encircling carbon nanotube (CNT) by adherent polydopamine. The CNT serves as an effective radiator for dispersing local heat sources. The composite separator avoids the violent growth of lithium dendrites caused by local heat accumulation, thus giving rise to high‐rate and safe lithium‐ion batteries.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202308929</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Accumulation ; Carbon nanotubes ; composite separator ; Core-shell structure ; core–shell nanotube ; Dispersion ; Finite element method ; Heat sources ; high rate ; Lithium ; Lithium-ion batteries ; Polyolefins ; Polyvinylidene fluorides ; Radiators ; Separators ; Shell stability ; Short circuits ; Thermal stability</subject><ispartof>Advanced functional materials, 2024-02, Vol.34 (9), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3179-d0ae12c97e7d0a8735ca12d9c3777212b53d5e233240d1b1e619fb55769e5af03</citedby><cites>FETCH-LOGICAL-c3179-d0ae12c97e7d0a8735ca12d9c3777212b53d5e233240d1b1e619fb55769e5af03</cites><orcidid>0000-0001-8242-2888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202308929$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202308929$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yuan, Botao</creatorcontrib><creatorcontrib>Feng, Yuhan</creatorcontrib><creatorcontrib>Qiu, Xinghan</creatorcontrib><creatorcontrib>He, Yuhui</creatorcontrib><creatorcontrib>Dong, Liwei</creatorcontrib><creatorcontrib>Zhong, Shijie</creatorcontrib><creatorcontrib>Liu, Jipeng</creatorcontrib><creatorcontrib>Liang, Yifang</creatorcontrib><creatorcontrib>Liu, Yuanpeng</creatorcontrib><creatorcontrib>Xie, Haodong</creatorcontrib><creatorcontrib>Liu, Zhezhi</creatorcontrib><creatorcontrib>Han, Jiecai</creatorcontrib><creatorcontrib>He, Weidong</creatorcontrib><title>A Safe Separator with Heat‐Dispersing Channels for High‐Rate Lithium‐Ion Batteries</title><title>Advanced functional materials</title><description>Separators are becoming increasingly important in both academic research and industrial production as a means of enhancing the performance of lithium‐ion batteries (LIBs), particularly at a high rate. However, fast charge–discharge processes will produce local heat accumulation, which accelerates the local reaction rate of Li+ to form lithium dendrites. Commercial polyolefin separators fail to tackle the above issue due to inferior thermal stability. Herein, a core–shell structure is proposed to reinforce the polyvinylidene fluoride‐hexafluoropropylene (PVDF‐HFP) matrix through encircling carbon nanotube (CNT) by adherent polydopamine (PDA). The core–shell 3D structure with PDA avoids the short circuits caused by the electrically conductive CNT, and meantime, the CNT serves as an effective radiator for dispersing local heat sources verified through finite element analysis. The composite separator allows LIBs to achieve high Li+ conductivity (0.49 × 10−3 S cm−1) and Li+ transfer number (0.74), resulting in a high capacity retention of 87.35% after 800 cycles at 5C. In particular, the safety is confirmed that the composite separator avoids violent growth of lithium dendrites caused by local heat accumulation through phase‐field simulations. This work suggests a promising approach for the fabrication of core–shell nanotube composite separators for high‐rate and safe LIBs.
In this study, a core–shell structure is proposed to reinforce the polyvinylidene fluoride‐hexafluoropropylene through encircling carbon nanotube (CNT) by adherent polydopamine. The CNT serves as an effective radiator for dispersing local heat sources. The composite separator avoids the violent growth of lithium dendrites caused by local heat accumulation, thus giving rise to high‐rate and safe lithium‐ion batteries.</description><subject>Accumulation</subject><subject>Carbon nanotubes</subject><subject>composite separator</subject><subject>Core-shell structure</subject><subject>core–shell nanotube</subject><subject>Dispersion</subject><subject>Finite element method</subject><subject>Heat sources</subject><subject>high rate</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Polyolefins</subject><subject>Polyvinylidene fluorides</subject><subject>Radiators</subject><subject>Separators</subject><subject>Shell stability</subject><subject>Short circuits</subject><subject>Thermal stability</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPAjEQhRujiYhePTfxvNhpd7f0iCBCgjERTbg1ZXcWSmB3bZcQbv4Ef6O_xBIMHj3Nm8z35iWPkFtgHWCM35u82HQ444J1FVdnpAUppJFgvHt-0jC7JFferxgDKUXcIrMenZoC6RRr40xTObqzzZKO0DTfn18D62t03pYL2l-assS1p0VgRnaxDOdX0yCdBN5uN2EdVyV9ME2DzqK_JheFWXu8-Z1t8j58fOuPosnL07jfm0SZAKminBkEnimJMsiuFElmgOcqE1JKDnyeiDxBLgSPWQ5zwBRUMU8SmSpMTMFEm9wd_9au-tiib_Sq2royRGquBMRKyBgC1TlSmau8d1jo2tmNcXsNTB_a04f29Km9YFBHw86ucf8PrXuD4fOf9we0EnWD</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Yuan, Botao</creator><creator>Feng, Yuhan</creator><creator>Qiu, Xinghan</creator><creator>He, Yuhui</creator><creator>Dong, Liwei</creator><creator>Zhong, Shijie</creator><creator>Liu, Jipeng</creator><creator>Liang, Yifang</creator><creator>Liu, Yuanpeng</creator><creator>Xie, Haodong</creator><creator>Liu, Zhezhi</creator><creator>Han, Jiecai</creator><creator>He, Weidong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8242-2888</orcidid></search><sort><creationdate>20240201</creationdate><title>A Safe Separator with Heat‐Dispersing Channels for High‐Rate Lithium‐Ion Batteries</title><author>Yuan, Botao ; Feng, Yuhan ; Qiu, Xinghan ; He, Yuhui ; Dong, Liwei ; Zhong, Shijie ; Liu, Jipeng ; Liang, Yifang ; Liu, Yuanpeng ; Xie, Haodong ; Liu, Zhezhi ; Han, Jiecai ; He, Weidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3179-d0ae12c97e7d0a8735ca12d9c3777212b53d5e233240d1b1e619fb55769e5af03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accumulation</topic><topic>Carbon nanotubes</topic><topic>composite separator</topic><topic>Core-shell structure</topic><topic>core–shell nanotube</topic><topic>Dispersion</topic><topic>Finite element method</topic><topic>Heat sources</topic><topic>high rate</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Polyolefins</topic><topic>Polyvinylidene fluorides</topic><topic>Radiators</topic><topic>Separators</topic><topic>Shell stability</topic><topic>Short circuits</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Botao</creatorcontrib><creatorcontrib>Feng, Yuhan</creatorcontrib><creatorcontrib>Qiu, Xinghan</creatorcontrib><creatorcontrib>He, Yuhui</creatorcontrib><creatorcontrib>Dong, Liwei</creatorcontrib><creatorcontrib>Zhong, Shijie</creatorcontrib><creatorcontrib>Liu, Jipeng</creatorcontrib><creatorcontrib>Liang, Yifang</creatorcontrib><creatorcontrib>Liu, Yuanpeng</creatorcontrib><creatorcontrib>Xie, Haodong</creatorcontrib><creatorcontrib>Liu, Zhezhi</creatorcontrib><creatorcontrib>Han, Jiecai</creatorcontrib><creatorcontrib>He, Weidong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Botao</au><au>Feng, Yuhan</au><au>Qiu, Xinghan</au><au>He, Yuhui</au><au>Dong, Liwei</au><au>Zhong, Shijie</au><au>Liu, Jipeng</au><au>Liang, Yifang</au><au>Liu, Yuanpeng</au><au>Xie, Haodong</au><au>Liu, Zhezhi</au><au>Han, Jiecai</au><au>He, Weidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Safe Separator with Heat‐Dispersing Channels for High‐Rate Lithium‐Ion Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>34</volume><issue>9</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Separators are becoming increasingly important in both academic research and industrial production as a means of enhancing the performance of lithium‐ion batteries (LIBs), particularly at a high rate. However, fast charge–discharge processes will produce local heat accumulation, which accelerates the local reaction rate of Li+ to form lithium dendrites. Commercial polyolefin separators fail to tackle the above issue due to inferior thermal stability. Herein, a core–shell structure is proposed to reinforce the polyvinylidene fluoride‐hexafluoropropylene (PVDF‐HFP) matrix through encircling carbon nanotube (CNT) by adherent polydopamine (PDA). The core–shell 3D structure with PDA avoids the short circuits caused by the electrically conductive CNT, and meantime, the CNT serves as an effective radiator for dispersing local heat sources verified through finite element analysis. The composite separator allows LIBs to achieve high Li+ conductivity (0.49 × 10−3 S cm−1) and Li+ transfer number (0.74), resulting in a high capacity retention of 87.35% after 800 cycles at 5C. In particular, the safety is confirmed that the composite separator avoids violent growth of lithium dendrites caused by local heat accumulation through phase‐field simulations. This work suggests a promising approach for the fabrication of core–shell nanotube composite separators for high‐rate and safe LIBs.
In this study, a core–shell structure is proposed to reinforce the polyvinylidene fluoride‐hexafluoropropylene through encircling carbon nanotube (CNT) by adherent polydopamine. The CNT serves as an effective radiator for dispersing local heat sources. The composite separator avoids the violent growth of lithium dendrites caused by local heat accumulation, thus giving rise to high‐rate and safe lithium‐ion batteries.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202308929</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8242-2888</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-02, Vol.34 (9), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2931493741 |
source | Wiley Journals |
subjects | Accumulation Carbon nanotubes composite separator Core-shell structure core–shell nanotube Dispersion Finite element method Heat sources high rate Lithium Lithium-ion batteries Polyolefins Polyvinylidene fluorides Radiators Separators Shell stability Short circuits Thermal stability |
title | A Safe Separator with Heat‐Dispersing Channels for High‐Rate Lithium‐Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A14%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Safe%20Separator%20with%20Heat%E2%80%90Dispersing%20Channels%20for%20High%E2%80%90Rate%20Lithium%E2%80%90Ion%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Yuan,%20Botao&rft.date=2024-02-01&rft.volume=34&rft.issue=9&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202308929&rft_dat=%3Cproquest_cross%3E2931493741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931493741&rft_id=info:pmid/&rfr_iscdi=true |