Expanding the toolbox for phycobiliprotein assembly: phycoerythrobilin biosynthesis in Synechocystis

Phycobiliproteins (PBPs) play a vital role in light harvesting by cyanobacteria, which enables efficient utilization of photon energy for oxygenic photosynthesis. The PBPs carry phycobilins, open‐chain tetrapyrrole chromophores derived from heme. The structure and chromophore composition of PBPs is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiologia plantarum 2024-01, Vol.176 (1), p.n/a
Hauptverfasser: Heck, Steffen, Sommer, Frederik, Zehner, Susanne, Schroda, Michael, Gehringer, Michelle M., Frankenberg‐Dinkel, Nicole
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Physiologia plantarum
container_volume 176
creator Heck, Steffen
Sommer, Frederik
Zehner, Susanne
Schroda, Michael
Gehringer, Michelle M.
Frankenberg‐Dinkel, Nicole
description Phycobiliproteins (PBPs) play a vital role in light harvesting by cyanobacteria, which enables efficient utilization of photon energy for oxygenic photosynthesis. The PBPs carry phycobilins, open‐chain tetrapyrrole chromophores derived from heme. The structure and chromophore composition of PBPs is dependent on the organism's ecological niche. In cyanobacteria, these holo‐proteins typically form large, macromolecular antenna complexes called phycobilisomes (PBSs). The PBS of Synechocystis sp. PCC 6803 (hereafter Synechocystis) consists of allophycocyanin (APC) and phycocyanin (PC), which exclusively harbor phycocyanobilin (PCB) as a chromophore. Investigations into heterologous PBP biosynthesis in E. coli have proven limiting with respect to PBP assembly and their functional characterization. Consequently, we wanted to engineer a platform for the investigation of heterologously produced PBPs, focusing on unusual, phycoerythrobilin (PEB)‐containing light‐harvesting proteins called phycoerythrins (PEs) in Synechocystis. As a first step, a gene encoding for the synthesis of the natural cyanobacterial chromophore, PEB, was introduced into Synechocystis. We provide spectroscopic evidence for heterologous PEB formation and show covalent attachment of PEB to the α‐subunit of PC, CpcA, by HPLC and LC–MS/MS analyses. Fluorescence microscopy and PBS isolation demonstrate a cellular dispersal of PBPs with modified phycobilin content. However, these modifications have minor effects on physiological responses, as demonstrated by growth rates, oxygen evolution, nutrient accumulation, and PBP content analyses. As a result, Synechocystis demonstrates the capacity to efficiently manage PEB biosynthesis and therefore reflects a promising platform for both biochemical and physiological investigations of foreign and unusual PEs.
doi_str_mv 10.1111/ppl.14137
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2931389285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931389285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3257-a6773cec3c8f474454d8a78da258dad862a3854fdef165fc407c5545aecb62aa3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsHv8GCFz1sm2ySzdabSP0DBQvqOWSzWTclTdZki823N3Y9Cc5hhuH9Zng8AC4RnKFU8743M0QQZkdggvBikWNIyTGYQIhRvsCInYKzEDYQorJExQQ0y30vbKPtRzZ0KhucM7XbZ63zWd9F6WptdO_doLTNRAhqW5t4O0rKx6HzB8JmtXYh2vQi6JCl_TVaJTsnYxh0OAcnrTBBXfzOKXh_WL7dP-Wrl8fn-7tVLnFBWS5KxrBUEsuqJYwQSppKsKoRBU2tqcpC4IqStlEtKmkrCWSSUkKFknXSBJ6C6_Fvcvy5U2HgWx2kMkZY5XaBY0ggrjBkMKFXf9CN23mb3PEixYSrRVHRRN2MlPQuBK9a3nu9FT5yBPlP3jzlzQ95J3Y-sl_aqPg_yNfr1XjxDZtkhDc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931389285</pqid></control><display><type>article</type><title>Expanding the toolbox for phycobiliprotein assembly: phycoerythrobilin biosynthesis in Synechocystis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Heck, Steffen ; Sommer, Frederik ; Zehner, Susanne ; Schroda, Michael ; Gehringer, Michelle M. ; Frankenberg‐Dinkel, Nicole</creator><creatorcontrib>Heck, Steffen ; Sommer, Frederik ; Zehner, Susanne ; Schroda, Michael ; Gehringer, Michelle M. ; Frankenberg‐Dinkel, Nicole</creatorcontrib><description>Phycobiliproteins (PBPs) play a vital role in light harvesting by cyanobacteria, which enables efficient utilization of photon energy for oxygenic photosynthesis. The PBPs carry phycobilins, open‐chain tetrapyrrole chromophores derived from heme. The structure and chromophore composition of PBPs is dependent on the organism's ecological niche. In cyanobacteria, these holo‐proteins typically form large, macromolecular antenna complexes called phycobilisomes (PBSs). The PBS of Synechocystis sp. PCC 6803 (hereafter Synechocystis) consists of allophycocyanin (APC) and phycocyanin (PC), which exclusively harbor phycocyanobilin (PCB) as a chromophore. Investigations into heterologous PBP biosynthesis in E. coli have proven limiting with respect to PBP assembly and their functional characterization. Consequently, we wanted to engineer a platform for the investigation of heterologously produced PBPs, focusing on unusual, phycoerythrobilin (PEB)‐containing light‐harvesting proteins called phycoerythrins (PEs) in Synechocystis. As a first step, a gene encoding for the synthesis of the natural cyanobacterial chromophore, PEB, was introduced into Synechocystis. We provide spectroscopic evidence for heterologous PEB formation and show covalent attachment of PEB to the α‐subunit of PC, CpcA, by HPLC and LC–MS/MS analyses. Fluorescence microscopy and PBS isolation demonstrate a cellular dispersal of PBPs with modified phycobilin content. However, these modifications have minor effects on physiological responses, as demonstrated by growth rates, oxygen evolution, nutrient accumulation, and PBP content analyses. As a result, Synechocystis demonstrates the capacity to efficiently manage PEB biosynthesis and therefore reflects a promising platform for both biochemical and physiological investigations of foreign and unusual PEs.</description><identifier>ISSN: 0031-9317</identifier><identifier>EISSN: 1399-3054</identifier><identifier>DOI: 10.1111/ppl.14137</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Assembly ; Biosynthesis ; Chromophores ; Cyanobacteria ; Dispersal ; E coli ; Ecological niches ; energy ; Escherichia coli ; Fluorescence microscopy ; genes ; heme ; Liquid chromatography ; Macromolecules ; niches ; Nutrient content ; oxygen production ; photons ; Photosynthesis ; Phycobilin ; Phycobiliproteins ; Phycobilisomes ; Phycocyanin ; Phycocyanobilin ; Phycoerythrins ; Physiological effects ; Physiological responses ; Physiology ; Proteins ; spectral analysis ; Synechocystis</subject><ispartof>Physiologia plantarum, 2024-01, Vol.176 (1), p.n/a</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd on behalf of Scandinavian Plant Physiology Society.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3257-a6773cec3c8f474454d8a78da258dad862a3854fdef165fc407c5545aecb62aa3</cites><orcidid>0000-0001-6872-0483 ; 0000-0002-4982-2465 ; 0009-0006-4773-4062 ; 0000-0003-0247-4907 ; 0000-0002-7757-6839 ; 0000-0003-3758-484X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fppl.14137$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fppl.14137$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Heck, Steffen</creatorcontrib><creatorcontrib>Sommer, Frederik</creatorcontrib><creatorcontrib>Zehner, Susanne</creatorcontrib><creatorcontrib>Schroda, Michael</creatorcontrib><creatorcontrib>Gehringer, Michelle M.</creatorcontrib><creatorcontrib>Frankenberg‐Dinkel, Nicole</creatorcontrib><title>Expanding the toolbox for phycobiliprotein assembly: phycoerythrobilin biosynthesis in Synechocystis</title><title>Physiologia plantarum</title><description>Phycobiliproteins (PBPs) play a vital role in light harvesting by cyanobacteria, which enables efficient utilization of photon energy for oxygenic photosynthesis. The PBPs carry phycobilins, open‐chain tetrapyrrole chromophores derived from heme. The structure and chromophore composition of PBPs is dependent on the organism's ecological niche. In cyanobacteria, these holo‐proteins typically form large, macromolecular antenna complexes called phycobilisomes (PBSs). The PBS of Synechocystis sp. PCC 6803 (hereafter Synechocystis) consists of allophycocyanin (APC) and phycocyanin (PC), which exclusively harbor phycocyanobilin (PCB) as a chromophore. Investigations into heterologous PBP biosynthesis in E. coli have proven limiting with respect to PBP assembly and their functional characterization. Consequently, we wanted to engineer a platform for the investigation of heterologously produced PBPs, focusing on unusual, phycoerythrobilin (PEB)‐containing light‐harvesting proteins called phycoerythrins (PEs) in Synechocystis. As a first step, a gene encoding for the synthesis of the natural cyanobacterial chromophore, PEB, was introduced into Synechocystis. We provide spectroscopic evidence for heterologous PEB formation and show covalent attachment of PEB to the α‐subunit of PC, CpcA, by HPLC and LC–MS/MS analyses. Fluorescence microscopy and PBS isolation demonstrate a cellular dispersal of PBPs with modified phycobilin content. However, these modifications have minor effects on physiological responses, as demonstrated by growth rates, oxygen evolution, nutrient accumulation, and PBP content analyses. As a result, Synechocystis demonstrates the capacity to efficiently manage PEB biosynthesis and therefore reflects a promising platform for both biochemical and physiological investigations of foreign and unusual PEs.</description><subject>Assembly</subject><subject>Biosynthesis</subject><subject>Chromophores</subject><subject>Cyanobacteria</subject><subject>Dispersal</subject><subject>E coli</subject><subject>Ecological niches</subject><subject>energy</subject><subject>Escherichia coli</subject><subject>Fluorescence microscopy</subject><subject>genes</subject><subject>heme</subject><subject>Liquid chromatography</subject><subject>Macromolecules</subject><subject>niches</subject><subject>Nutrient content</subject><subject>oxygen production</subject><subject>photons</subject><subject>Photosynthesis</subject><subject>Phycobilin</subject><subject>Phycobiliproteins</subject><subject>Phycobilisomes</subject><subject>Phycocyanin</subject><subject>Phycocyanobilin</subject><subject>Phycoerythrins</subject><subject>Physiological effects</subject><subject>Physiological responses</subject><subject>Physiology</subject><subject>Proteins</subject><subject>spectral analysis</subject><subject>Synechocystis</subject><issn>0031-9317</issn><issn>1399-3054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kE9LAzEQxYMoWKsHv8GCFz1sm2ySzdabSP0DBQvqOWSzWTclTdZki823N3Y9Cc5hhuH9Zng8AC4RnKFU8743M0QQZkdggvBikWNIyTGYQIhRvsCInYKzEDYQorJExQQ0y30vbKPtRzZ0KhucM7XbZ63zWd9F6WptdO_doLTNRAhqW5t4O0rKx6HzB8JmtXYh2vQi6JCl_TVaJTsnYxh0OAcnrTBBXfzOKXh_WL7dP-Wrl8fn-7tVLnFBWS5KxrBUEsuqJYwQSppKsKoRBU2tqcpC4IqStlEtKmkrCWSSUkKFknXSBJ6C6_Fvcvy5U2HgWx2kMkZY5XaBY0ggrjBkMKFXf9CN23mb3PEixYSrRVHRRN2MlPQuBK9a3nu9FT5yBPlP3jzlzQ95J3Y-sl_aqPg_yNfr1XjxDZtkhDc</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Heck, Steffen</creator><creator>Sommer, Frederik</creator><creator>Zehner, Susanne</creator><creator>Schroda, Michael</creator><creator>Gehringer, Michelle M.</creator><creator>Frankenberg‐Dinkel, Nicole</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-6872-0483</orcidid><orcidid>https://orcid.org/0000-0002-4982-2465</orcidid><orcidid>https://orcid.org/0009-0006-4773-4062</orcidid><orcidid>https://orcid.org/0000-0003-0247-4907</orcidid><orcidid>https://orcid.org/0000-0002-7757-6839</orcidid><orcidid>https://orcid.org/0000-0003-3758-484X</orcidid></search><sort><creationdate>202401</creationdate><title>Expanding the toolbox for phycobiliprotein assembly: phycoerythrobilin biosynthesis in Synechocystis</title><author>Heck, Steffen ; Sommer, Frederik ; Zehner, Susanne ; Schroda, Michael ; Gehringer, Michelle M. ; Frankenberg‐Dinkel, Nicole</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3257-a6773cec3c8f474454d8a78da258dad862a3854fdef165fc407c5545aecb62aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Assembly</topic><topic>Biosynthesis</topic><topic>Chromophores</topic><topic>Cyanobacteria</topic><topic>Dispersal</topic><topic>E coli</topic><topic>Ecological niches</topic><topic>energy</topic><topic>Escherichia coli</topic><topic>Fluorescence microscopy</topic><topic>genes</topic><topic>heme</topic><topic>Liquid chromatography</topic><topic>Macromolecules</topic><topic>niches</topic><topic>Nutrient content</topic><topic>oxygen production</topic><topic>photons</topic><topic>Photosynthesis</topic><topic>Phycobilin</topic><topic>Phycobiliproteins</topic><topic>Phycobilisomes</topic><topic>Phycocyanin</topic><topic>Phycocyanobilin</topic><topic>Phycoerythrins</topic><topic>Physiological effects</topic><topic>Physiological responses</topic><topic>Physiology</topic><topic>Proteins</topic><topic>spectral analysis</topic><topic>Synechocystis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heck, Steffen</creatorcontrib><creatorcontrib>Sommer, Frederik</creatorcontrib><creatorcontrib>Zehner, Susanne</creatorcontrib><creatorcontrib>Schroda, Michael</creatorcontrib><creatorcontrib>Gehringer, Michelle M.</creatorcontrib><creatorcontrib>Frankenberg‐Dinkel, Nicole</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Physiologia plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heck, Steffen</au><au>Sommer, Frederik</au><au>Zehner, Susanne</au><au>Schroda, Michael</au><au>Gehringer, Michelle M.</au><au>Frankenberg‐Dinkel, Nicole</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expanding the toolbox for phycobiliprotein assembly: phycoerythrobilin biosynthesis in Synechocystis</atitle><jtitle>Physiologia plantarum</jtitle><date>2024-01</date><risdate>2024</risdate><volume>176</volume><issue>1</issue><epage>n/a</epage><issn>0031-9317</issn><eissn>1399-3054</eissn><abstract>Phycobiliproteins (PBPs) play a vital role in light harvesting by cyanobacteria, which enables efficient utilization of photon energy for oxygenic photosynthesis. The PBPs carry phycobilins, open‐chain tetrapyrrole chromophores derived from heme. The structure and chromophore composition of PBPs is dependent on the organism's ecological niche. In cyanobacteria, these holo‐proteins typically form large, macromolecular antenna complexes called phycobilisomes (PBSs). The PBS of Synechocystis sp. PCC 6803 (hereafter Synechocystis) consists of allophycocyanin (APC) and phycocyanin (PC), which exclusively harbor phycocyanobilin (PCB) as a chromophore. Investigations into heterologous PBP biosynthesis in E. coli have proven limiting with respect to PBP assembly and their functional characterization. Consequently, we wanted to engineer a platform for the investigation of heterologously produced PBPs, focusing on unusual, phycoerythrobilin (PEB)‐containing light‐harvesting proteins called phycoerythrins (PEs) in Synechocystis. As a first step, a gene encoding for the synthesis of the natural cyanobacterial chromophore, PEB, was introduced into Synechocystis. We provide spectroscopic evidence for heterologous PEB formation and show covalent attachment of PEB to the α‐subunit of PC, CpcA, by HPLC and LC–MS/MS analyses. Fluorescence microscopy and PBS isolation demonstrate a cellular dispersal of PBPs with modified phycobilin content. However, these modifications have minor effects on physiological responses, as demonstrated by growth rates, oxygen evolution, nutrient accumulation, and PBP content analyses. As a result, Synechocystis demonstrates the capacity to efficiently manage PEB biosynthesis and therefore reflects a promising platform for both biochemical and physiological investigations of foreign and unusual PEs.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/ppl.14137</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6872-0483</orcidid><orcidid>https://orcid.org/0000-0002-4982-2465</orcidid><orcidid>https://orcid.org/0009-0006-4773-4062</orcidid><orcidid>https://orcid.org/0000-0003-0247-4907</orcidid><orcidid>https://orcid.org/0000-0002-7757-6839</orcidid><orcidid>https://orcid.org/0000-0003-3758-484X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9317
ispartof Physiologia plantarum, 2024-01, Vol.176 (1), p.n/a
issn 0031-9317
1399-3054
language eng
recordid cdi_proquest_journals_2931389285
source Wiley Online Library Journals Frontfile Complete
subjects Assembly
Biosynthesis
Chromophores
Cyanobacteria
Dispersal
E coli
Ecological niches
energy
Escherichia coli
Fluorescence microscopy
genes
heme
Liquid chromatography
Macromolecules
niches
Nutrient content
oxygen production
photons
Photosynthesis
Phycobilin
Phycobiliproteins
Phycobilisomes
Phycocyanin
Phycocyanobilin
Phycoerythrins
Physiological effects
Physiological responses
Physiology
Proteins
spectral analysis
Synechocystis
title Expanding the toolbox for phycobiliprotein assembly: phycoerythrobilin biosynthesis in Synechocystis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expanding%20the%20toolbox%20for%20phycobiliprotein%20assembly:%20phycoerythrobilin%20biosynthesis%20in%20Synechocystis&rft.jtitle=Physiologia%20plantarum&rft.au=Heck,%20Steffen&rft.date=2024-01&rft.volume=176&rft.issue=1&rft.epage=n/a&rft.issn=0031-9317&rft.eissn=1399-3054&rft_id=info:doi/10.1111/ppl.14137&rft_dat=%3Cproquest_cross%3E2931389285%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931389285&rft_id=info:pmid/&rfr_iscdi=true