Expanding the toolbox for phycobiliprotein assembly: phycoerythrobilin biosynthesis in Synechocystis
Phycobiliproteins (PBPs) play a vital role in light harvesting by cyanobacteria, which enables efficient utilization of photon energy for oxygenic photosynthesis. The PBPs carry phycobilins, open‐chain tetrapyrrole chromophores derived from heme. The structure and chromophore composition of PBPs is...
Gespeichert in:
Veröffentlicht in: | Physiologia plantarum 2024-01, Vol.176 (1), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Physiologia plantarum |
container_volume | 176 |
creator | Heck, Steffen Sommer, Frederik Zehner, Susanne Schroda, Michael Gehringer, Michelle M. Frankenberg‐Dinkel, Nicole |
description | Phycobiliproteins (PBPs) play a vital role in light harvesting by cyanobacteria, which enables efficient utilization of photon energy for oxygenic photosynthesis. The PBPs carry phycobilins, open‐chain tetrapyrrole chromophores derived from heme. The structure and chromophore composition of PBPs is dependent on the organism's ecological niche. In cyanobacteria, these holo‐proteins typically form large, macromolecular antenna complexes called phycobilisomes (PBSs). The PBS of Synechocystis sp. PCC 6803 (hereafter Synechocystis) consists of allophycocyanin (APC) and phycocyanin (PC), which exclusively harbor phycocyanobilin (PCB) as a chromophore. Investigations into heterologous PBP biosynthesis in E. coli have proven limiting with respect to PBP assembly and their functional characterization. Consequently, we wanted to engineer a platform for the investigation of heterologously produced PBPs, focusing on unusual, phycoerythrobilin (PEB)‐containing light‐harvesting proteins called phycoerythrins (PEs) in Synechocystis. As a first step, a gene encoding for the synthesis of the natural cyanobacterial chromophore, PEB, was introduced into Synechocystis. We provide spectroscopic evidence for heterologous PEB formation and show covalent attachment of PEB to the α‐subunit of PC, CpcA, by HPLC and LC–MS/MS analyses. Fluorescence microscopy and PBS isolation demonstrate a cellular dispersal of PBPs with modified phycobilin content. However, these modifications have minor effects on physiological responses, as demonstrated by growth rates, oxygen evolution, nutrient accumulation, and PBP content analyses. As a result, Synechocystis demonstrates the capacity to efficiently manage PEB biosynthesis and therefore reflects a promising platform for both biochemical and physiological investigations of foreign and unusual PEs. |
doi_str_mv | 10.1111/ppl.14137 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2931389285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931389285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3257-a6773cec3c8f474454d8a78da258dad862a3854fdef165fc407c5545aecb62aa3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsHv8GCFz1sm2ySzdabSP0DBQvqOWSzWTclTdZki823N3Y9Cc5hhuH9Zng8AC4RnKFU8743M0QQZkdggvBikWNIyTGYQIhRvsCInYKzEDYQorJExQQ0y30vbKPtRzZ0KhucM7XbZ63zWd9F6WptdO_doLTNRAhqW5t4O0rKx6HzB8JmtXYh2vQi6JCl_TVaJTsnYxh0OAcnrTBBXfzOKXh_WL7dP-Wrl8fn-7tVLnFBWS5KxrBUEsuqJYwQSppKsKoRBU2tqcpC4IqStlEtKmkrCWSSUkKFknXSBJ6C6_Fvcvy5U2HgWx2kMkZY5XaBY0ggrjBkMKFXf9CN23mb3PEixYSrRVHRRN2MlPQuBK9a3nu9FT5yBPlP3jzlzQ95J3Y-sl_aqPg_yNfr1XjxDZtkhDc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931389285</pqid></control><display><type>article</type><title>Expanding the toolbox for phycobiliprotein assembly: phycoerythrobilin biosynthesis in Synechocystis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Heck, Steffen ; Sommer, Frederik ; Zehner, Susanne ; Schroda, Michael ; Gehringer, Michelle M. ; Frankenberg‐Dinkel, Nicole</creator><creatorcontrib>Heck, Steffen ; Sommer, Frederik ; Zehner, Susanne ; Schroda, Michael ; Gehringer, Michelle M. ; Frankenberg‐Dinkel, Nicole</creatorcontrib><description>Phycobiliproteins (PBPs) play a vital role in light harvesting by cyanobacteria, which enables efficient utilization of photon energy for oxygenic photosynthesis. The PBPs carry phycobilins, open‐chain tetrapyrrole chromophores derived from heme. The structure and chromophore composition of PBPs is dependent on the organism's ecological niche. In cyanobacteria, these holo‐proteins typically form large, macromolecular antenna complexes called phycobilisomes (PBSs). The PBS of Synechocystis sp. PCC 6803 (hereafter Synechocystis) consists of allophycocyanin (APC) and phycocyanin (PC), which exclusively harbor phycocyanobilin (PCB) as a chromophore. Investigations into heterologous PBP biosynthesis in E. coli have proven limiting with respect to PBP assembly and their functional characterization. Consequently, we wanted to engineer a platform for the investigation of heterologously produced PBPs, focusing on unusual, phycoerythrobilin (PEB)‐containing light‐harvesting proteins called phycoerythrins (PEs) in Synechocystis. As a first step, a gene encoding for the synthesis of the natural cyanobacterial chromophore, PEB, was introduced into Synechocystis. We provide spectroscopic evidence for heterologous PEB formation and show covalent attachment of PEB to the α‐subunit of PC, CpcA, by HPLC and LC–MS/MS analyses. Fluorescence microscopy and PBS isolation demonstrate a cellular dispersal of PBPs with modified phycobilin content. However, these modifications have minor effects on physiological responses, as demonstrated by growth rates, oxygen evolution, nutrient accumulation, and PBP content analyses. As a result, Synechocystis demonstrates the capacity to efficiently manage PEB biosynthesis and therefore reflects a promising platform for both biochemical and physiological investigations of foreign and unusual PEs.</description><identifier>ISSN: 0031-9317</identifier><identifier>EISSN: 1399-3054</identifier><identifier>DOI: 10.1111/ppl.14137</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Assembly ; Biosynthesis ; Chromophores ; Cyanobacteria ; Dispersal ; E coli ; Ecological niches ; energy ; Escherichia coli ; Fluorescence microscopy ; genes ; heme ; Liquid chromatography ; Macromolecules ; niches ; Nutrient content ; oxygen production ; photons ; Photosynthesis ; Phycobilin ; Phycobiliproteins ; Phycobilisomes ; Phycocyanin ; Phycocyanobilin ; Phycoerythrins ; Physiological effects ; Physiological responses ; Physiology ; Proteins ; spectral analysis ; Synechocystis</subject><ispartof>Physiologia plantarum, 2024-01, Vol.176 (1), p.n/a</ispartof><rights>2023 The Authors. published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3257-a6773cec3c8f474454d8a78da258dad862a3854fdef165fc407c5545aecb62aa3</cites><orcidid>0000-0001-6872-0483 ; 0000-0002-4982-2465 ; 0009-0006-4773-4062 ; 0000-0003-0247-4907 ; 0000-0002-7757-6839 ; 0000-0003-3758-484X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fppl.14137$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fppl.14137$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Heck, Steffen</creatorcontrib><creatorcontrib>Sommer, Frederik</creatorcontrib><creatorcontrib>Zehner, Susanne</creatorcontrib><creatorcontrib>Schroda, Michael</creatorcontrib><creatorcontrib>Gehringer, Michelle M.</creatorcontrib><creatorcontrib>Frankenberg‐Dinkel, Nicole</creatorcontrib><title>Expanding the toolbox for phycobiliprotein assembly: phycoerythrobilin biosynthesis in Synechocystis</title><title>Physiologia plantarum</title><description>Phycobiliproteins (PBPs) play a vital role in light harvesting by cyanobacteria, which enables efficient utilization of photon energy for oxygenic photosynthesis. The PBPs carry phycobilins, open‐chain tetrapyrrole chromophores derived from heme. The structure and chromophore composition of PBPs is dependent on the organism's ecological niche. In cyanobacteria, these holo‐proteins typically form large, macromolecular antenna complexes called phycobilisomes (PBSs). The PBS of Synechocystis sp. PCC 6803 (hereafter Synechocystis) consists of allophycocyanin (APC) and phycocyanin (PC), which exclusively harbor phycocyanobilin (PCB) as a chromophore. Investigations into heterologous PBP biosynthesis in E. coli have proven limiting with respect to PBP assembly and their functional characterization. Consequently, we wanted to engineer a platform for the investigation of heterologously produced PBPs, focusing on unusual, phycoerythrobilin (PEB)‐containing light‐harvesting proteins called phycoerythrins (PEs) in Synechocystis. As a first step, a gene encoding for the synthesis of the natural cyanobacterial chromophore, PEB, was introduced into Synechocystis. We provide spectroscopic evidence for heterologous PEB formation and show covalent attachment of PEB to the α‐subunit of PC, CpcA, by HPLC and LC–MS/MS analyses. Fluorescence microscopy and PBS isolation demonstrate a cellular dispersal of PBPs with modified phycobilin content. However, these modifications have minor effects on physiological responses, as demonstrated by growth rates, oxygen evolution, nutrient accumulation, and PBP content analyses. As a result, Synechocystis demonstrates the capacity to efficiently manage PEB biosynthesis and therefore reflects a promising platform for both biochemical and physiological investigations of foreign and unusual PEs.</description><subject>Assembly</subject><subject>Biosynthesis</subject><subject>Chromophores</subject><subject>Cyanobacteria</subject><subject>Dispersal</subject><subject>E coli</subject><subject>Ecological niches</subject><subject>energy</subject><subject>Escherichia coli</subject><subject>Fluorescence microscopy</subject><subject>genes</subject><subject>heme</subject><subject>Liquid chromatography</subject><subject>Macromolecules</subject><subject>niches</subject><subject>Nutrient content</subject><subject>oxygen production</subject><subject>photons</subject><subject>Photosynthesis</subject><subject>Phycobilin</subject><subject>Phycobiliproteins</subject><subject>Phycobilisomes</subject><subject>Phycocyanin</subject><subject>Phycocyanobilin</subject><subject>Phycoerythrins</subject><subject>Physiological effects</subject><subject>Physiological responses</subject><subject>Physiology</subject><subject>Proteins</subject><subject>spectral analysis</subject><subject>Synechocystis</subject><issn>0031-9317</issn><issn>1399-3054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kE9LAzEQxYMoWKsHv8GCFz1sm2ySzdabSP0DBQvqOWSzWTclTdZki823N3Y9Cc5hhuH9Zng8AC4RnKFU8743M0QQZkdggvBikWNIyTGYQIhRvsCInYKzEDYQorJExQQ0y30vbKPtRzZ0KhucM7XbZ63zWd9F6WptdO_doLTNRAhqW5t4O0rKx6HzB8JmtXYh2vQi6JCl_TVaJTsnYxh0OAcnrTBBXfzOKXh_WL7dP-Wrl8fn-7tVLnFBWS5KxrBUEsuqJYwQSppKsKoRBU2tqcpC4IqStlEtKmkrCWSSUkKFknXSBJ6C6_Fvcvy5U2HgWx2kMkZY5XaBY0ggrjBkMKFXf9CN23mb3PEixYSrRVHRRN2MlPQuBK9a3nu9FT5yBPlP3jzlzQ95J3Y-sl_aqPg_yNfr1XjxDZtkhDc</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Heck, Steffen</creator><creator>Sommer, Frederik</creator><creator>Zehner, Susanne</creator><creator>Schroda, Michael</creator><creator>Gehringer, Michelle M.</creator><creator>Frankenberg‐Dinkel, Nicole</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-6872-0483</orcidid><orcidid>https://orcid.org/0000-0002-4982-2465</orcidid><orcidid>https://orcid.org/0009-0006-4773-4062</orcidid><orcidid>https://orcid.org/0000-0003-0247-4907</orcidid><orcidid>https://orcid.org/0000-0002-7757-6839</orcidid><orcidid>https://orcid.org/0000-0003-3758-484X</orcidid></search><sort><creationdate>202401</creationdate><title>Expanding the toolbox for phycobiliprotein assembly: phycoerythrobilin biosynthesis in Synechocystis</title><author>Heck, Steffen ; Sommer, Frederik ; Zehner, Susanne ; Schroda, Michael ; Gehringer, Michelle M. ; Frankenberg‐Dinkel, Nicole</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3257-a6773cec3c8f474454d8a78da258dad862a3854fdef165fc407c5545aecb62aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Assembly</topic><topic>Biosynthesis</topic><topic>Chromophores</topic><topic>Cyanobacteria</topic><topic>Dispersal</topic><topic>E coli</topic><topic>Ecological niches</topic><topic>energy</topic><topic>Escherichia coli</topic><topic>Fluorescence microscopy</topic><topic>genes</topic><topic>heme</topic><topic>Liquid chromatography</topic><topic>Macromolecules</topic><topic>niches</topic><topic>Nutrient content</topic><topic>oxygen production</topic><topic>photons</topic><topic>Photosynthesis</topic><topic>Phycobilin</topic><topic>Phycobiliproteins</topic><topic>Phycobilisomes</topic><topic>Phycocyanin</topic><topic>Phycocyanobilin</topic><topic>Phycoerythrins</topic><topic>Physiological effects</topic><topic>Physiological responses</topic><topic>Physiology</topic><topic>Proteins</topic><topic>spectral analysis</topic><topic>Synechocystis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heck, Steffen</creatorcontrib><creatorcontrib>Sommer, Frederik</creatorcontrib><creatorcontrib>Zehner, Susanne</creatorcontrib><creatorcontrib>Schroda, Michael</creatorcontrib><creatorcontrib>Gehringer, Michelle M.</creatorcontrib><creatorcontrib>Frankenberg‐Dinkel, Nicole</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Physiologia plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heck, Steffen</au><au>Sommer, Frederik</au><au>Zehner, Susanne</au><au>Schroda, Michael</au><au>Gehringer, Michelle M.</au><au>Frankenberg‐Dinkel, Nicole</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expanding the toolbox for phycobiliprotein assembly: phycoerythrobilin biosynthesis in Synechocystis</atitle><jtitle>Physiologia plantarum</jtitle><date>2024-01</date><risdate>2024</risdate><volume>176</volume><issue>1</issue><epage>n/a</epage><issn>0031-9317</issn><eissn>1399-3054</eissn><abstract>Phycobiliproteins (PBPs) play a vital role in light harvesting by cyanobacteria, which enables efficient utilization of photon energy for oxygenic photosynthesis. The PBPs carry phycobilins, open‐chain tetrapyrrole chromophores derived from heme. The structure and chromophore composition of PBPs is dependent on the organism's ecological niche. In cyanobacteria, these holo‐proteins typically form large, macromolecular antenna complexes called phycobilisomes (PBSs). The PBS of Synechocystis sp. PCC 6803 (hereafter Synechocystis) consists of allophycocyanin (APC) and phycocyanin (PC), which exclusively harbor phycocyanobilin (PCB) as a chromophore. Investigations into heterologous PBP biosynthesis in E. coli have proven limiting with respect to PBP assembly and their functional characterization. Consequently, we wanted to engineer a platform for the investigation of heterologously produced PBPs, focusing on unusual, phycoerythrobilin (PEB)‐containing light‐harvesting proteins called phycoerythrins (PEs) in Synechocystis. As a first step, a gene encoding for the synthesis of the natural cyanobacterial chromophore, PEB, was introduced into Synechocystis. We provide spectroscopic evidence for heterologous PEB formation and show covalent attachment of PEB to the α‐subunit of PC, CpcA, by HPLC and LC–MS/MS analyses. Fluorescence microscopy and PBS isolation demonstrate a cellular dispersal of PBPs with modified phycobilin content. However, these modifications have minor effects on physiological responses, as demonstrated by growth rates, oxygen evolution, nutrient accumulation, and PBP content analyses. As a result, Synechocystis demonstrates the capacity to efficiently manage PEB biosynthesis and therefore reflects a promising platform for both biochemical and physiological investigations of foreign and unusual PEs.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/ppl.14137</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6872-0483</orcidid><orcidid>https://orcid.org/0000-0002-4982-2465</orcidid><orcidid>https://orcid.org/0009-0006-4773-4062</orcidid><orcidid>https://orcid.org/0000-0003-0247-4907</orcidid><orcidid>https://orcid.org/0000-0002-7757-6839</orcidid><orcidid>https://orcid.org/0000-0003-3758-484X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9317 |
ispartof | Physiologia plantarum, 2024-01, Vol.176 (1), p.n/a |
issn | 0031-9317 1399-3054 |
language | eng |
recordid | cdi_proquest_journals_2931389285 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Assembly Biosynthesis Chromophores Cyanobacteria Dispersal E coli Ecological niches energy Escherichia coli Fluorescence microscopy genes heme Liquid chromatography Macromolecules niches Nutrient content oxygen production photons Photosynthesis Phycobilin Phycobiliproteins Phycobilisomes Phycocyanin Phycocyanobilin Phycoerythrins Physiological effects Physiological responses Physiology Proteins spectral analysis Synechocystis |
title | Expanding the toolbox for phycobiliprotein assembly: phycoerythrobilin biosynthesis in Synechocystis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expanding%20the%20toolbox%20for%20phycobiliprotein%20assembly:%20phycoerythrobilin%20biosynthesis%20in%20Synechocystis&rft.jtitle=Physiologia%20plantarum&rft.au=Heck,%20Steffen&rft.date=2024-01&rft.volume=176&rft.issue=1&rft.epage=n/a&rft.issn=0031-9317&rft.eissn=1399-3054&rft_id=info:doi/10.1111/ppl.14137&rft_dat=%3Cproquest_cross%3E2931389285%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931389285&rft_id=info:pmid/&rfr_iscdi=true |