Strongly Gorenstein-projective modules over rings of Morita contexts
Let Δ ( 0 , 0 ) = A A N B B M A B be a Morita ring such that the bimodule homomorphisms are zero. In this paper, we give sufficient conditions for a Δ ( 0 , 0 ) -module ( X , Y , f , g ) to be strongly Gorenstein-projective. Moreover, we describe all strongly Gorenstein-projective modules over th...
Gespeichert in:
Veröffentlicht in: | Beiträge zur Algebra und Geometrie 2024-03, Vol.65 (1), p.43-57 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57 |
---|---|
container_issue | 1 |
container_start_page | 43 |
container_title | Beiträge zur Algebra und Geometrie |
container_volume | 65 |
creator | Asefa, Dadi |
description | Let
Δ
(
0
,
0
)
=
A
A
N
B
B
M
A
B
be a Morita ring such that the bimodule homomorphisms are zero. In this paper, we give sufficient conditions for a
Δ
(
0
,
0
)
-module (
X
,
Y
,
f
,
g
) to be strongly Gorenstein-projective. Moreover, we describe all strongly Gorenstein-projective modules over the
2
×
2
matrix algebra
M
2
(
A
)
over
A
. |
doi_str_mv | 10.1007/s13366-022-00675-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2931328889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931328889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-afe9a4e6db217b94c3814bebeaa8198c6ce9fb89939f86579138f8e5c1c646723</originalsourceid><addsrcrecordid>eNp9kL1OAzEQhC0EEiHwAlQnURu89sU_JQoQkEAUQG3dOevoouQcbCcib4_DIdFR7RYzs7MfIZfAroExdZNACCkp45wyJtWEqiMy4mCAMqHFMRkxEJrWmsMpOUtpyQ4qpUbk7i3H0C9W-2oWIvYpY9fTTQxLdLnbYbUO8-0KUxV2GKvY9Yuy-uolxC43lQt9xq-czsmJb1YJL37nmHw83L9PH-nz6-xpevtMnQCTaePRNDXKectBtaZ2QkPdYotNo8FoJx0a32pjhPFaTpQpnb3GiQMna6m4GJOrIbcU_NxiynYZtrEvJy03AgTXWpui4oPKxZBSRG83sVs3cW-B2QMtO9CyhZb9oWVVMYnBlDaHLzH-Rf_j-gYfq22w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931328889</pqid></control><display><type>article</type><title>Strongly Gorenstein-projective modules over rings of Morita contexts</title><source>SpringerLink Journals - AutoHoldings</source><creator>Asefa, Dadi</creator><creatorcontrib>Asefa, Dadi</creatorcontrib><description>Let
Δ
(
0
,
0
)
=
A
A
N
B
B
M
A
B
be a Morita ring such that the bimodule homomorphisms are zero. In this paper, we give sufficient conditions for a
Δ
(
0
,
0
)
-module (
X
,
Y
,
f
,
g
) to be strongly Gorenstein-projective. Moreover, we describe all strongly Gorenstein-projective modules over the
2
×
2
matrix algebra
M
2
(
A
)
over
A
.</description><identifier>ISSN: 0138-4821</identifier><identifier>EISSN: 2191-0383</identifier><identifier>DOI: 10.1007/s13366-022-00675-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Algebraic Geometry ; Convex and Discrete Geometry ; Geometry ; Homomorphisms ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Matrix algebra ; Modules ; Original Paper ; Rings (mathematics)</subject><ispartof>Beiträge zur Algebra und Geometrie, 2024-03, Vol.65 (1), p.43-57</ispartof><rights>The Managing Editors 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-afe9a4e6db217b94c3814bebeaa8198c6ce9fb89939f86579138f8e5c1c646723</citedby><cites>FETCH-LOGICAL-c319t-afe9a4e6db217b94c3814bebeaa8198c6ce9fb89939f86579138f8e5c1c646723</cites><orcidid>0000-0001-5545-3478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13366-022-00675-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13366-022-00675-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Asefa, Dadi</creatorcontrib><title>Strongly Gorenstein-projective modules over rings of Morita contexts</title><title>Beiträge zur Algebra und Geometrie</title><addtitle>Beitr Algebra Geom</addtitle><description>Let
Δ
(
0
,
0
)
=
A
A
N
B
B
M
A
B
be a Morita ring such that the bimodule homomorphisms are zero. In this paper, we give sufficient conditions for a
Δ
(
0
,
0
)
-module (
X
,
Y
,
f
,
g
) to be strongly Gorenstein-projective. Moreover, we describe all strongly Gorenstein-projective modules over the
2
×
2
matrix algebra
M
2
(
A
)
over
A
.</description><subject>Algebra</subject><subject>Algebraic Geometry</subject><subject>Convex and Discrete Geometry</subject><subject>Geometry</subject><subject>Homomorphisms</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix algebra</subject><subject>Modules</subject><subject>Original Paper</subject><subject>Rings (mathematics)</subject><issn>0138-4821</issn><issn>2191-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OAzEQhC0EEiHwAlQnURu89sU_JQoQkEAUQG3dOevoouQcbCcib4_DIdFR7RYzs7MfIZfAroExdZNACCkp45wyJtWEqiMy4mCAMqHFMRkxEJrWmsMpOUtpyQ4qpUbk7i3H0C9W-2oWIvYpY9fTTQxLdLnbYbUO8-0KUxV2GKvY9Yuy-uolxC43lQt9xq-czsmJb1YJL37nmHw83L9PH-nz6-xpevtMnQCTaePRNDXKectBtaZ2QkPdYotNo8FoJx0a32pjhPFaTpQpnb3GiQMna6m4GJOrIbcU_NxiynYZtrEvJy03AgTXWpui4oPKxZBSRG83sVs3cW-B2QMtO9CyhZb9oWVVMYnBlDaHLzH-Rf_j-gYfq22w</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Asefa, Dadi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5545-3478</orcidid></search><sort><creationdate>20240301</creationdate><title>Strongly Gorenstein-projective modules over rings of Morita contexts</title><author>Asefa, Dadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-afe9a4e6db217b94c3814bebeaa8198c6ce9fb89939f86579138f8e5c1c646723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Algebraic Geometry</topic><topic>Convex and Discrete Geometry</topic><topic>Geometry</topic><topic>Homomorphisms</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix algebra</topic><topic>Modules</topic><topic>Original Paper</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asefa, Dadi</creatorcontrib><collection>CrossRef</collection><jtitle>Beiträge zur Algebra und Geometrie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asefa, Dadi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strongly Gorenstein-projective modules over rings of Morita contexts</atitle><jtitle>Beiträge zur Algebra und Geometrie</jtitle><stitle>Beitr Algebra Geom</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>65</volume><issue>1</issue><spage>43</spage><epage>57</epage><pages>43-57</pages><issn>0138-4821</issn><eissn>2191-0383</eissn><abstract>Let
Δ
(
0
,
0
)
=
A
A
N
B
B
M
A
B
be a Morita ring such that the bimodule homomorphisms are zero. In this paper, we give sufficient conditions for a
Δ
(
0
,
0
)
-module (
X
,
Y
,
f
,
g
) to be strongly Gorenstein-projective. Moreover, we describe all strongly Gorenstein-projective modules over the
2
×
2
matrix algebra
M
2
(
A
)
over
A
.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13366-022-00675-7</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5545-3478</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0138-4821 |
ispartof | Beiträge zur Algebra und Geometrie, 2024-03, Vol.65 (1), p.43-57 |
issn | 0138-4821 2191-0383 |
language | eng |
recordid | cdi_proquest_journals_2931328889 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Algebraic Geometry Convex and Discrete Geometry Geometry Homomorphisms Mathematical analysis Mathematics Mathematics and Statistics Matrix algebra Modules Original Paper Rings (mathematics) |
title | Strongly Gorenstein-projective modules over rings of Morita contexts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strongly%20Gorenstein-projective%20modules%20over%20rings%20of%20Morita%20contexts&rft.jtitle=Beitr%C3%A4ge%20zur%20Algebra%20und%20Geometrie&rft.au=Asefa,%20Dadi&rft.date=2024-03-01&rft.volume=65&rft.issue=1&rft.spage=43&rft.epage=57&rft.pages=43-57&rft.issn=0138-4821&rft.eissn=2191-0383&rft_id=info:doi/10.1007/s13366-022-00675-7&rft_dat=%3Cproquest_cross%3E2931328889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931328889&rft_id=info:pmid/&rfr_iscdi=true |