Prediction of California Bearing Ratio Using Soil Index Properties by Regression and Machine-Learning Techniques
This study proposes regression and machine-learning techniques to develop a validated model that predicts the California Bearing Ratio (CBR) values for subgrade soil using soil index properties. Around 60 specimens were prepared experimentally by adding different sand percentages to the natural soil...
Gespeichert in:
Veröffentlicht in: | International journal of pavement research & technology 2024-03, Vol.17 (2), p.306-324 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 324 |
---|---|
container_issue | 2 |
container_start_page | 306 |
container_title | International journal of pavement research & technology |
container_volume | 17 |
creator | Khasawneh, Mohammad A. Al-Akhrass, Haneen I. Rabab’ah, Samer R. Al-sugaier, Ahmed O. |
description | This study proposes regression and machine-learning techniques to develop a validated model that predicts the California Bearing Ratio (CBR) values for subgrade soil using soil index properties. Around 60 specimens were prepared experimentally by adding different sand percentages to the natural soil to provide a wide range of soil properties. In addition, soil test reports from the local transportation authority were also used in the study. A total of 110 soil samples were included to generalize the predicted model. This study included three machine-learning (ML) techniques: artificial neural networks (ANN), M5P Model tree, and the lazy algorithm K-nearest neighbor. In addition, two conventional modeling techniques were used: multiple linear regression (MLR) and nonlinear regression (NLR). In the developed model, the laboratory-determined CBR represents the response variables, whereas the compaction characteristics (optimum moisture content (OMC) and maximum dry density (MDD)), Atterberg limits (liquid limit (LL), plastic limit (PL), and plasticity index (PI)), density, gradation parameter (percent of materials retained on sieve #200 (
R
200
), and percent of materials retained on sieve #10 (
R
10
)) were used as predictors. Results revealed that the best model to predict the CBR for soil using material properties is the ANN model with
R
2
of 90.46 and RMSE of 7.89, followed by KNN, MLR, M5P, and nonlinear regression in descending order. |
doi_str_mv | 10.1007/s42947-022-00237-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2931328519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931328519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-dadd2d2b4d3a17e696ceb5bb6a19043b1f172edd103770a272069059b3a2f8c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWLR_wFXAdTRfnUyWWvwoVCy1rkNmkmkjNRmTKdj-ejMdwZ2r9-Ddex4cAK4IviEYi9vEqeQCYUoRxpQJdDgBIyKlQIRjfHrcC1SUhJ-DcUquwpxTUkpejEC7iNa4unPBw9DAqd66JkTvNLy3Ojq_hkudj_A99ftbcFs488Z-w0UMrY2dswlWe7i062gzOlO0N_BF1xvnLZpnhu-LK1tvvPva2XQJzhq9TXb8Oy_A6vFhNX1G89en2fRujmpGZIeMNoYaWnHDNBG2kEVtq0lVFZpIzFlFGiKoNYZgJgTWVFBcSDyRFdO0KWt2Aa4HbBtD_7ZTH2EXff6oqGSE0XJCZE7RIVXHkFK0jWqj-9RxrwhWvVs1uFXZrTq6VYdcYkMptb0gG__Q_7R-AL8Nffc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931328519</pqid></control><display><type>article</type><title>Prediction of California Bearing Ratio Using Soil Index Properties by Regression and Machine-Learning Techniques</title><source>SpringerLink Journals - AutoHoldings</source><creator>Khasawneh, Mohammad A. ; Al-Akhrass, Haneen I. ; Rabab’ah, Samer R. ; Al-sugaier, Ahmed O.</creator><creatorcontrib>Khasawneh, Mohammad A. ; Al-Akhrass, Haneen I. ; Rabab’ah, Samer R. ; Al-sugaier, Ahmed O.</creatorcontrib><description>This study proposes regression and machine-learning techniques to develop a validated model that predicts the California Bearing Ratio (CBR) values for subgrade soil using soil index properties. Around 60 specimens were prepared experimentally by adding different sand percentages to the natural soil to provide a wide range of soil properties. In addition, soil test reports from the local transportation authority were also used in the study. A total of 110 soil samples were included to generalize the predicted model. This study included three machine-learning (ML) techniques: artificial neural networks (ANN), M5P Model tree, and the lazy algorithm K-nearest neighbor. In addition, two conventional modeling techniques were used: multiple linear regression (MLR) and nonlinear regression (NLR). In the developed model, the laboratory-determined CBR represents the response variables, whereas the compaction characteristics (optimum moisture content (OMC) and maximum dry density (MDD)), Atterberg limits (liquid limit (LL), plastic limit (PL), and plasticity index (PI)), density, gradation parameter (percent of materials retained on sieve #200 (
R
200
), and percent of materials retained on sieve #10 (
R
10
)) were used as predictors. Results revealed that the best model to predict the CBR for soil using material properties is the ANN model with
R
2
of 90.46 and RMSE of 7.89, followed by KNN, MLR, M5P, and nonlinear regression in descending order.</description><identifier>ISSN: 1996-6814</identifier><identifier>EISSN: 1997-1400</identifier><identifier>DOI: 10.1007/s42947-022-00237-z</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Algorithms ; Artificial neural networks ; Atterberg limits ; Building Construction and Design ; California bearing ratio ; Civil Engineering ; Dry density ; Engineering ; Liquid limits ; Machine learning ; Material properties ; Moisture content ; Original Research Paper ; Penetration tests ; Plastic limit ; Plasticity index ; Regression ; Soil compaction ; Soil properties ; Soil testing ; Structural Materials</subject><ispartof>International journal of pavement research & technology, 2024-03, Vol.17 (2), p.306-324</ispartof><rights>The Author(s), under exclusive licence to Chinese Society of Pavement Engineering 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-dadd2d2b4d3a17e696ceb5bb6a19043b1f172edd103770a272069059b3a2f8c3</citedby><cites>FETCH-LOGICAL-c319t-dadd2d2b4d3a17e696ceb5bb6a19043b1f172edd103770a272069059b3a2f8c3</cites><orcidid>0000-0002-4370-9007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42947-022-00237-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s42947-022-00237-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Khasawneh, Mohammad A.</creatorcontrib><creatorcontrib>Al-Akhrass, Haneen I.</creatorcontrib><creatorcontrib>Rabab’ah, Samer R.</creatorcontrib><creatorcontrib>Al-sugaier, Ahmed O.</creatorcontrib><title>Prediction of California Bearing Ratio Using Soil Index Properties by Regression and Machine-Learning Techniques</title><title>International journal of pavement research & technology</title><addtitle>Int. J. Pavement Res. Technol</addtitle><description>This study proposes regression and machine-learning techniques to develop a validated model that predicts the California Bearing Ratio (CBR) values for subgrade soil using soil index properties. Around 60 specimens were prepared experimentally by adding different sand percentages to the natural soil to provide a wide range of soil properties. In addition, soil test reports from the local transportation authority were also used in the study. A total of 110 soil samples were included to generalize the predicted model. This study included three machine-learning (ML) techniques: artificial neural networks (ANN), M5P Model tree, and the lazy algorithm K-nearest neighbor. In addition, two conventional modeling techniques were used: multiple linear regression (MLR) and nonlinear regression (NLR). In the developed model, the laboratory-determined CBR represents the response variables, whereas the compaction characteristics (optimum moisture content (OMC) and maximum dry density (MDD)), Atterberg limits (liquid limit (LL), plastic limit (PL), and plasticity index (PI)), density, gradation parameter (percent of materials retained on sieve #200 (
R
200
), and percent of materials retained on sieve #10 (
R
10
)) were used as predictors. Results revealed that the best model to predict the CBR for soil using material properties is the ANN model with
R
2
of 90.46 and RMSE of 7.89, followed by KNN, MLR, M5P, and nonlinear regression in descending order.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Atterberg limits</subject><subject>Building Construction and Design</subject><subject>California bearing ratio</subject><subject>Civil Engineering</subject><subject>Dry density</subject><subject>Engineering</subject><subject>Liquid limits</subject><subject>Machine learning</subject><subject>Material properties</subject><subject>Moisture content</subject><subject>Original Research Paper</subject><subject>Penetration tests</subject><subject>Plastic limit</subject><subject>Plasticity index</subject><subject>Regression</subject><subject>Soil compaction</subject><subject>Soil properties</subject><subject>Soil testing</subject><subject>Structural Materials</subject><issn>1996-6814</issn><issn>1997-1400</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWLR_wFXAdTRfnUyWWvwoVCy1rkNmkmkjNRmTKdj-ejMdwZ2r9-Ddex4cAK4IviEYi9vEqeQCYUoRxpQJdDgBIyKlQIRjfHrcC1SUhJ-DcUquwpxTUkpejEC7iNa4unPBw9DAqd66JkTvNLy3Ojq_hkudj_A99ftbcFs488Z-w0UMrY2dswlWe7i062gzOlO0N_BF1xvnLZpnhu-LK1tvvPva2XQJzhq9TXb8Oy_A6vFhNX1G89en2fRujmpGZIeMNoYaWnHDNBG2kEVtq0lVFZpIzFlFGiKoNYZgJgTWVFBcSDyRFdO0KWt2Aa4HbBtD_7ZTH2EXff6oqGSE0XJCZE7RIVXHkFK0jWqj-9RxrwhWvVs1uFXZrTq6VYdcYkMptb0gG__Q_7R-AL8Nffc</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Khasawneh, Mohammad A.</creator><creator>Al-Akhrass, Haneen I.</creator><creator>Rabab’ah, Samer R.</creator><creator>Al-sugaier, Ahmed O.</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-4370-9007</orcidid></search><sort><creationdate>20240301</creationdate><title>Prediction of California Bearing Ratio Using Soil Index Properties by Regression and Machine-Learning Techniques</title><author>Khasawneh, Mohammad A. ; Al-Akhrass, Haneen I. ; Rabab’ah, Samer R. ; Al-sugaier, Ahmed O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-dadd2d2b4d3a17e696ceb5bb6a19043b1f172edd103770a272069059b3a2f8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Atterberg limits</topic><topic>Building Construction and Design</topic><topic>California bearing ratio</topic><topic>Civil Engineering</topic><topic>Dry density</topic><topic>Engineering</topic><topic>Liquid limits</topic><topic>Machine learning</topic><topic>Material properties</topic><topic>Moisture content</topic><topic>Original Research Paper</topic><topic>Penetration tests</topic><topic>Plastic limit</topic><topic>Plasticity index</topic><topic>Regression</topic><topic>Soil compaction</topic><topic>Soil properties</topic><topic>Soil testing</topic><topic>Structural Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khasawneh, Mohammad A.</creatorcontrib><creatorcontrib>Al-Akhrass, Haneen I.</creatorcontrib><creatorcontrib>Rabab’ah, Samer R.</creatorcontrib><creatorcontrib>Al-sugaier, Ahmed O.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of pavement research & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khasawneh, Mohammad A.</au><au>Al-Akhrass, Haneen I.</au><au>Rabab’ah, Samer R.</au><au>Al-sugaier, Ahmed O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of California Bearing Ratio Using Soil Index Properties by Regression and Machine-Learning Techniques</atitle><jtitle>International journal of pavement research & technology</jtitle><stitle>Int. J. Pavement Res. Technol</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>17</volume><issue>2</issue><spage>306</spage><epage>324</epage><pages>306-324</pages><issn>1996-6814</issn><eissn>1997-1400</eissn><abstract>This study proposes regression and machine-learning techniques to develop a validated model that predicts the California Bearing Ratio (CBR) values for subgrade soil using soil index properties. Around 60 specimens were prepared experimentally by adding different sand percentages to the natural soil to provide a wide range of soil properties. In addition, soil test reports from the local transportation authority were also used in the study. A total of 110 soil samples were included to generalize the predicted model. This study included three machine-learning (ML) techniques: artificial neural networks (ANN), M5P Model tree, and the lazy algorithm K-nearest neighbor. In addition, two conventional modeling techniques were used: multiple linear regression (MLR) and nonlinear regression (NLR). In the developed model, the laboratory-determined CBR represents the response variables, whereas the compaction characteristics (optimum moisture content (OMC) and maximum dry density (MDD)), Atterberg limits (liquid limit (LL), plastic limit (PL), and plasticity index (PI)), density, gradation parameter (percent of materials retained on sieve #200 (
R
200
), and percent of materials retained on sieve #10 (
R
10
)) were used as predictors. Results revealed that the best model to predict the CBR for soil using material properties is the ANN model with
R
2
of 90.46 and RMSE of 7.89, followed by KNN, MLR, M5P, and nonlinear regression in descending order.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42947-022-00237-z</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4370-9007</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-6814 |
ispartof | International journal of pavement research & technology, 2024-03, Vol.17 (2), p.306-324 |
issn | 1996-6814 1997-1400 |
language | eng |
recordid | cdi_proquest_journals_2931328519 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Artificial neural networks Atterberg limits Building Construction and Design California bearing ratio Civil Engineering Dry density Engineering Liquid limits Machine learning Material properties Moisture content Original Research Paper Penetration tests Plastic limit Plasticity index Regression Soil compaction Soil properties Soil testing Structural Materials |
title | Prediction of California Bearing Ratio Using Soil Index Properties by Regression and Machine-Learning Techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A22%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20California%20Bearing%20Ratio%20Using%20Soil%20Index%20Properties%20by%20Regression%20and%20Machine-Learning%20Techniques&rft.jtitle=International%20journal%20of%20pavement%20research%20&%20technology&rft.au=Khasawneh,%20Mohammad%20A.&rft.date=2024-03-01&rft.volume=17&rft.issue=2&rft.spage=306&rft.epage=324&rft.pages=306-324&rft.issn=1996-6814&rft.eissn=1997-1400&rft_id=info:doi/10.1007/s42947-022-00237-z&rft_dat=%3Cproquest_cross%3E2931328519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931328519&rft_id=info:pmid/&rfr_iscdi=true |